GenAI
NLP
InterSpeech

From Disfluency Detection to Intent Detection and Slot Filling

June 16, 2022

We present the first empirical study investigating the influence of disfluency detection on downstream tasks of intent detection and slot filling. We perform this study for Vietnamese — a low-resource language that has no previous study as well as no public dataset available for disfluency detection. First, we extend the fluent Vietnamese intent detection and slot filling dataset PhoATIS by manually adding contextual disfluencies and annotating them. Then, we conduct experiments using strong baselines for disfluency detection and joint intent detection and slot filling, which are based on pre-trained language models. We find that: (i) disfluencies produce negative effects on the performances of the downstream intent detection and slot filling tasks, and (ii) in the disfluency context, the pre-trained multilingual language model XLM-R helps produce better intent detection and slot filling performances than the pre-trained monolingual language model PhoBERT, and this is opposite to what generally found in the fluency context.

Overall

< 1 minute

Mai Hoang Dao, Thinh Hung Truong, Dat Quoc Nguyen

InterSpeech 2022

Share Article

Related publications

GenAI
CV
NeurIPS
November 28, 2024

Hao Phung*, Quan Dao*, Trung Dao, Viet Hoang Phan, Dimitris N. Metaxas, Anh Tran

GenAI
ML
NeurIPS
November 28, 2024
Long Tung Vuong, Anh Tuan Bui,
Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung
GenAI
ML
NeurIPS
November 28, 2024

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, Nhat Ho

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen