NLP
Findings of ACL

Retrieving Relevant Context to Align Representations for Cross-lingual Event Detection

May 22, 2023

We study the problem of cross-lingual transfer learning for event detection (ED) where mod- els trained on a source language are expected to perform well on data for a new target lan- guage. Among a few recent works for this problem, the main approaches involve repre- sentation matching (e.g., adversarial training) that aims to eliminate language-specific fea- tures from the representations to achieve the language-invariant representations. However, due to the mix of language-specific features with event-discriminative context, representa- tion matching methods might also remove im- portant features for event prediction, thus hin- dering the performance for ED. To address this issue, we introduce a novel approach for cross-lingual ED where representations are aug- mented with additional context (i.e., not elim- inating) to bridge the gap between languages while enriching the contextual information to facilitate ED. At the core of our method in- volves a retrieval model that retrieves relevant sentences in the target language for an input sentence to compute augmentation representa- tions. Experiments on three languages demon- strate the state-of-the-art performance of our model for cross-lingual ED.

Overall

< 1 minute

Nguyen Van Chien, Linh Van Ngo, Nguyen Huu Thien

Findings of ACL 2023

Share Article

Related publications

NLP
NAACL Findings
November 28, 2024

Thang Le

NLP
EMNLP Findings
November 28, 2024

Duy-Tung Pham*, Thien Trang Nguyen Vu*, Tung Nguyen*, Linh Van Ngo, Duc Anh Nguyen, Thien Huu Nguyen

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen

GenAI
NLP
EMNLP Findings
November 28, 2024

Quang Hieu Pham*, Hoang Ngo*, Anh Tuan Luu, Dat Quoc Nguyen