Conditional 360-degree Image Synthesis for Immersive Indoor Scene Decoration

July 31, 2023

In this paper, we address the problem of conditional scene decoration for 360-degree images. Our method takes a 360-degree background photograph of an indoor scene and generates decorated images of the same scene in the panorama view. To do this, we develop a 360-aware object layout generator that learns latent object vectors in the 360-degree view to enable a variety of furniture arrangements for an input 360-degree background image. We use this object layout to condition a generative adversarial network to synthesize images of an input scene. To further reinforce the generation capability of our model, we develop a simple yet effective scene emptier that removes the generated furniture and produces an emptied scene for our model to learn a cyclic constraint. We train the model on the Structure3D dataset and show that our model can generate diverse decorations with controllable object layout. Our method achieves state-of-the-art performance on the Structure3D dataset and generalizes well to the Zillow indoor scene dataset. Our user study confirms the immersive experiences provided by the realistic image quality and furniture layout in our generation results. Our implementation will be made available.


< 1 minute

Jason Shum, Hong-Wing Pang, Son Hua, Duc Thanh Nguyen, Sai-Kit Yeung

ICCV 2023

Share Article

Related publications

ICML Top Tier
May 14, 2024

Bao Nguyen, Binh Nguyen, Hieu Nguyen, Viet Anh Nguyen

NAACL Top Tier
April 4, 2024

Thang Le, Tuan Luu

CVPR Top Tier
March 4, 2024

Thuan Hoang Nguyen, Anh Tran

ICLR – Tiny Papers Track
February 14, 2024

Thanh-Thien Le, Linh The Nguyen, Dat Quoc Nguyen