ML NeurIPS

Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning

October 4, 2023

Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Utilizing mutual learning can effectively enhance the performance of peer BNNs. In this paper, we propose a novel approach to improve BNNs performance through deep mutual learning. The proposed approaches aim to increase diversity in both network parameter distributions and feature distributions, promoting peer networks to acquire distinct features that capture different characteristics of the input, which enhances the effectiveness of mutual learning. Experimental results demonstrate significant improvements in the classification accuracy, negative log-likelihood, and expected calibration error when compared to traditional mutual learning for BNNs.

Overall

< 1 minute

Cuong Pham, Cuong C. Nguyen, Trung Le, Dinh Phung, Gustavo Carneiro, Thanh-Toan Do

NeurIPS 2023

Share Article

Related publications

ML ICLR Top Tier
February 19, 2024

Nguyen Hung-Quang, Yingjie Lao, Tung Pham, Kok-Seng Wong, Khoa D Doan

CV ML AAAI Top Tier
January 8, 2024

Tran Huynh Ngoc, Dang Minh Nguyen, Tung Pham, Anh Tran

ML AAAI Top Tier
January 8, 2024

Viet Nguyen*, Giang Vu*, Tung Nguyen Thanh, Khoat Than, Toan Tran

ML NeurIPS Top Tier
October 4, 2023

Van-Anh Nguyen, Trung Le, Anh Tuan Bui, Thanh-Toan Do, Dinh Phung