NLP
NAACL

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing

March 15, 2021

We present the first multi-task learning model — named PhoNLP — for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at: https://github.com/VinAIResearch/PhoNLP

Overall

< 1 minute

Linh The Nguyen, Dat Quoc Nguyen

NAACL 2021

Share Article

Related publications

NLP
NAACL Findings
November 28, 2024

Thang Le

NLP
EMNLP Findings
November 28, 2024

Duy-Tung Pham*, Thien Trang Nguyen Vu*, Tung Nguyen*, Linh Van Ngo, Duc Anh Nguyen, Thien Huu Nguyen

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen

GenAI
NLP
EMNLP Findings
November 28, 2024

Quang Hieu Pham*, Hoang Ngo*, Anh Tuan Luu, Dat Quoc Nguyen