ML
UAI

Robust Bayesian Recourse

May 18, 2022

Algorithmic recourse aims to recommend an informative feedback to overturn an unfavorable machine learning decision. We introduce in this paper the Bayesian recourse, a model-agnostic recourse that minimizes the posterior probability odds ratio. Further, we present its min-max robust counterpart with the goal of hedging against future changes in the machine learning model parameters. The robust counterpart explicitly takes into account possible perturbations of the data in a Gaussian mixture ambiguity set prescribed using the optimal transport (Wasserstein) distance. We show that the resulting worst-case objective function can be decomposed into solving a series of two-dimensional optimization subproblems, and the min-max recourse finding problem is thus amenable to a gradient descent algorithm. Contrary to existing methods for generating robust recourses, the robust Bayesian recourse does not require a linear approximation step. The numerical experiment demonstrates the effectiveness of our proposed robust Bayesian recourse facing model shifts. Our code is available at https://github.com/VinAIResearch/robust-bayesian-recourse.

Overall

< 1 minute

Tuan-Duy, Ngoc Bui, Duy Nguyen, Man-Chung Yue, Viet Anh Nguyen

UAI 2022

Share Article

Related publications

ML
ICML Top Tier
May 16, 2024

Vy Vo, He Zhao, Trung Le, Edwin V. Bonilla, Dinh Phung

ML
ICML Top Tier
May 16, 2024

Vy Vo, Trung Le, Tung-Long Vuong, He Zhao, Edwin V. Bonilla, Dinh Phung

ML
ICML Top Tier
May 14, 2024

Ngoc Bui, Hieu Trung Nguyen, Viet Anh Nguyen, Rex Ying

GenAI
ML
ICML Top Tier
May 14, 2024

Bao Nguyen, Binh Nguyen, Hieu Nguyen, Viet Anh Nguyen