GenAI
NLP
EMNLP Findings

Who’s Who: Large Lanquage Models Meet Knowledge Conflicts in Practice

November 28, 2024

Retrieval-augmented generation (RAG) methods are viable solutions for addressing the static memory limits of pre-trained language models. Nevertheless, encountering conflicting sources of information within the retrieval context is an inevitable practical challenge. In such situations, the language models are recommended to transparently inform users about the conflicts rather than autonomously deciding what to present based on their inherent biases. To analyze how current large language models (LLMs) align with our recommendation, we introduce WhoQA, a public benchmark dataset to examine model’s behavior in knowledge conflict situations. We induce conflicts by asking about a common property among entities having the same name, resulting in questions with up to 8 distinctive answers. WhoQA evaluation set includes 5K questions across 13 Wikidata property types and 150K Wikipedia entities.
Our experiments show that despite the simplicity of WhoQA questions, knowledge conflicts significantly degrades LLMs’ performance in RAG settings.

Overall

< 1 minute

Quang Hieu Pham*, Hoang Ngo*, Anh Tuan Luu, Dat Quoc Nguyen

Share Article

Related publications

GenAI
CV
NeurIPS
November 28, 2024

Hao Phung*, Quan Dao*, Trung Dao, Viet Hoang Phan, Dimitris N. Metaxas, Anh Tran

GenAI
ML
NeurIPS
November 28, 2024
Long Tung Vuong, Anh Tuan Bui,
Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung
GenAI
ML
NeurIPS
November 28, 2024

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, Nhat Ho

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen