SEMINAR

AlphaGeometry: Solving IMO Geometry without Human Demonstrations

Speaker

Trieu Trinh

Working
Google Deepmind
Timeline
Fri, Jul 5 2024 - 10:00 am (GMT + 7)
About Speaker

Trieu is a senior research scientist at Google Deepmind, his work focuses on the problem of reasoning for AI systems. Trieu aims to build computers that can help accelerate scientific and technological progress.

Abstract

Proving mathematical theorems at the olympiad level represents a notable milestone in human-level automated reasoning, owing to their reputed difficulty among the world’s best talents in pre-university mathematics. Current machine-learning approaches, however, are not applicable to most mathematical domains owing to the high cost of translating human proofs into machine-verifiable format. The problem is even worse for geometry because of its unique translation challenges, resulting in severe scarcity of training data. We propose AlphaGeometry, a theorem prover for Euclidean plane geometry that sidesteps the need for human demonstrations by synthesizing millions of theorems and proofs across different levels of complexity. AlphaGeometry is a neuro-symbolic system that uses a neural language model, trained from scratch on our large-scale synthetic data, to guide a symbolic deduction engine through infinite branching points in challenging problems. On a test set of 30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the previous best method that only solves ten problems and approaching the performance of an average International Mathematical Olympiad (IMO) gold medallist. Notably, AlphaGeometry produces human-readable proofs, solves all geometry problems in the IMO 2000 and 2015 under human expert evaluation and discovers a generalized version of a translated IMO theorem in 2004.

Related seminars

Dr. Tu Vu

Virginia Tech

Efficient Model Development in the Era of Large Language Models
Tue, Nov 5 2024 - 09:30 am (GMT + 7)
Representation Learning with Graph Autoencoders and Applications to Music Recommendation
Fri, Jul 26 2024 - 10:00 am (GMT + 7)

Tat-Jun (TJ) Chin

Adelaide University

Quantum Computing in Computer Vision: A Case Study in Robust Geometric Optimisation
Fri, Jun 7 2024 - 11:00 am (GMT + 7)

Fernando De la Torre

Carnegie Mellon University

Human Sensing for AR/VR
Wed, Apr 24 2024 - 07:00 am (GMT + 7)