Domain Adaptation on Wheels: Closing the Gap to the Open-world


Tuan Hung Vu

Tue, Jul 25 2023 - 03:00 pm (GMT + 7)
About Speaker

Tuan-Hung Vu is a research scientist at in France. He obtained his Ph.D. in computer vision and machine learning from Ecole Normale Supérieure in 2018 under the supervision of Ivan Laptev. His recent works focus on label-efficient learning of robust and reliable perception models, covering various topics such as domain adaptation, domain generalization, robustness, zero-shot learning, and open-vocabulary learning.


Recent years have witnessed tremendous success of deep models in critical scene understanding tasks like semantic segmentation, playing a vital role in the perception stack of autonomous machines. Although state-of-the-art deep models achieve remarkable performance in their operational design domain (ODD), they are prone to failure when the input data shifts away from the ODD. To tackle this challenge, Domain Adaptation has recently emerged as a promising tool to mitigate the failures caused by data shifts at a minimal operational cost. In this talk, I will demonstrate how domain adaptation can be employed for autonomous driving applications. I will start by revisiting the standard unsupervised domain adaptation (UDA) setup in semantic segmentation (AdvEnt CVPR’19, DADA ICCV’19, xMUDA CVPR’21, ConDA TPAMI’21), then discuss different approaches to make domain adaptation more practical (BUDA CVIU’21, MTAF ICCV’21, and MuHDi CVPRW’22). Moving closer to the ultimate open-world testbed, I will present the technique developed in our recent work (PODA arxiv’23) that performs adaptation to the unseen.

Related seminars

Anh Nguyen

Microsoft GenAI

The Revolution of Small Language Models
Fri, Mar 8 2024 - 02:30 pm (GMT + 7)

Thang D. Bui

Australian National University (ANU)

Recent Progress on Grokking and Probabilistic Federated Learning
Fri, Jan 26 2024 - 10:00 am (GMT + 7)

Tim Baldwin

MBZUAI, The University of Melbourne

Tue, Jan 9 2024 - 10:30 am (GMT + 7)

Quan Vuong

Google DeepMind

Scaling Robot Learning
Wed, Dec 27 2023 - 10:00 am (GMT + 7)