SEMINAR

Towards calibrated and flexible probabilistic deep learning

Speaker

Thang Bui

Working
University of Sydney
Timeline
Fri, Jul 24 2020 - 03:00 pm (GMT + 7)
About Speaker

Thang Bui is a research scientist at Uber AI and a lecturer in Machine Learning at the University of Sydney. He has a PhD degree in Machine Learning from the Department of Engineering, University of Cambridge and a BEng from the University of Adelaide. He is broadly interested in machine learning and statistics, with a particular focus on neural networks, probabilistic models, approximate Bayesian inference, and sequential decision making under uncertainty.

Abstract

Deep learning has achieved great successes in many real-world domains, ranging from vision, language to game playing. Yet, it has been shown to possess many limitations, including: (i) it is not robust to out-of-distribution inputs and (ii) it suffers from catastrophic forgetting when faced with streaming data. In this talk, I will show how we have addressed some of these limitations by combining deep learning with probabilistic modelling. This combination provides desirable test-time uncertainty estimates on out-of-distribution data and allows neural networks to be trained in an incremental way. If time permits, I will show general distributed learning, also known as federated learning, can also be handled by the same algorithmic framework.

Related seminars

Tim Baldwin

MBZUAI, The University of Melbourne

Safe, open, locally-aligned language models
Mon, Dec 16 2024 - 02:00 pm (GMT + 7)

Alessio Del Bue

Italian Institute of Technology (IIT)

From Spatial AI to Embodied AI: The Path to Autonomous Systems
Mon, Dec 16 2024 - 10:00 am (GMT + 7)

Dr. Xiaoming Liu

Michigan State University

Person Recognition at a Distance
Mon, Dec 9 2024 - 10:00 am (GMT + 7)

Dr Lan Du

Monash University

Uncertainty Estimation for Multi-view/Multimodal Data
Fri, Dec 6 2024 - 10:00 am (GMT + 7)