SEMINAR

Tractable Probabilistic Circuits

Speaker

Guy Van den Broeck

Working
University of California
Timeline
Fri, May 27 2022 - 10:00 am (GMT + 7)
About Speaker

Guy Van den Broeck is an Associate Professor and Samueli Fellow at UCLA, in the Computer Science Department, where he directs the Statistical and Relational Artificial Intelligence (StarAI) lab. His research interests are in Machine Learning, Knowledge Representation and Reasoning, and Artificial Intelligence in general. His papers have been recognized with awards from key conferences such as AAAI, UAI, KR, OOPSLA, and ILP. Guy is the recipient of an NSF CAREER award, a Sloan Fellowship, and the IJCAI-19 Computers and Thought Award.

Abstract

Probabilistic circuits represent distributions through the computation graph of probabilistic inference, as a type of neural network. They move beyond probabilistic graphical models and other deep generative models by guaranteeing tractable inference for certain classes of queries: marginal probabilities, entropies, expectations, and related queries of interest. These probabilistic circuit models are now also effectively learned from data, outperforming VAE and flow-based likelihoods on MNIST-family benchmarks. They thus enable new solutions to some key problems in machine learning, including state-of-the-art neural compression results. This talk will overview these recent developments, in terms of learning, probabilistic inference, theory, and applications.

Related seminars

Dr. Tu Vu

Virginia Tech

Efficient Model Development in the Era of Large Language Models
Tue, Nov 5 2024 - 09:30 am (GMT + 7)
Representation Learning with Graph Autoencoders and Applications to Music Recommendation
Fri, Jul 26 2024 - 10:00 am (GMT + 7)

Trieu Trinh

Google Deepmind

AlphaGeometry: Solving IMO Geometry without Human Demonstrations
Fri, Jul 5 2024 - 10:00 am (GMT + 7)

Tat-Jun (TJ) Chin

Adelaide University

Quantum Computing in Computer Vision: A Case Study in Robust Geometric Optimisation
Fri, Jun 7 2024 - 11:00 am (GMT + 7)