(Un)trustworthy Machine Learning: How to Balance Security, Accuracy, and Privacy


Eugene Bagdasaryan

Cornell University
Tue, Apr 4 2023 - 09:30 am (GMT + 7)
About Speaker

Eugene Bagdasaryan is a doctoral candidate at Cornell University, where he is advised by Vitaly Shmatikov and Deborah Estrin. He studies how machine learning systems can fail or cause harm and how to make these systems better. His research has been published at security and privacy and machine learning venues and has been recognized by the Apple Scholars in AI/ML PhD fellowship.


Machine learning methods have become a commodity in the toolkits of both researchers and practitioners. For performance and privacy reasons, new applications often rely on third-party code or pretrained models, train on crowd-sourced data, and sometimes move learning to users’ devices. This introduces vulnerabilities such as backdoors, i.e., unrelated tasks that the model may unintentionally learn when an adversary controls parts of the training data or pipeline. In this talk, he will identify new threats to ML models and propose approaches that balance security, accuracy, and privacy without disruptive changes to the existing training infrastructures.

Related seminars

Trieu Trinh

Google Deepmind

AlphaGeometry: Solving IMO Geometry without Human Demonstrations
Fri, Jul 5 2024 - 10:00 am (GMT + 7)

Tat-Jun (TJ) Chin

Adelaide University

Quantum Computing in Computer Vision: A Case Study in Robust Geometric Optimisation
Fri, Jun 7 2024 - 11:00 am (GMT + 7)

Fernando De la Torre

Carnegie Mellon University

Human Sensing for AR/VR
Wed, Apr 24 2024 - 07:00 am (GMT + 7)

Anh Nguyen

Microsoft GenAI

The Revolution of Small Language Models
Fri, Mar 8 2024 - 02:30 pm (GMT + 7)