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ABSTRACT

It is well-known that deep neural networks (DNNs) are susceptible to adversar-
ial attacks, exposing a severe fragility of deep learning systems. As the result,
adversarial training (AT) method, by incorporating adversarial examples during
training, represents a natural and effective approach to strengthen the robustness
of a DNN-based classifier. However, most AT-based methods, notably PGD-AT
and TRADES, typically seek a pointwise adversary that generates the worst-case
adversarial example by independently perturbing each data sample, as a way to
“probe” the vulnerability of the classifier. Arguably, there are unexplored benefits
in considering such adversarial effects from an entire distribution. To this end, this
paper presents a unified framework that connects Wasserstein distributional robust-
ness with current state-of-the-art AT methods. We introduce a new Wasserstein cost
function and a new series of risk functions, with which we show that standard AT
methods are special cases of their counterparts in our framework. This connection
leads to an intuitive relaxation and generalization of existing AT methods and
facilitates the development of a new family of distributional robustness AT-based
algorithms. Extensive experiments show that our distributional robustness AT
algorithms robustify further their standard AT counterparts in various settings.1

1 INTRODUCTION

Despite remarkable performances of DNN-based deep learning methods, even the state-of-the-art
(SOTA) models are reported to be vulnerable to adversarial attacks (Biggio et al., 2013; Szegedy
et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Athalye et al., 2018; Zhao et al., 2019b;
2021a), which is of significant concern given the large number of applications of deep learning in
real-world scenarios. Usually, adversarial attacks are generated by adding small perturbations to
benign data but to change the predictions of the target model. To enhance the robustness of DNNs,
various adversarial defense methods have been developed, recently Pang et al. (2019); Dong et al.
(2020); Zhang et al. (2020b); Bai et al. (2020). Among a number of adversarial defenses, Adversarial
Training (AT) is one of the most effective and widely-used approaches (Goodfellow et al., 2015;
Madry et al., 2018; Shafahi et al., 2019; Tramèr & Boneh, 2019; Zhang & Wang, 2019; Xie et al.,
2020). In general, given a classifier, AT can be viewed as a robust optimization process (Ben-Tal
et al., 2009) of seeking a pointwise adversary (Staib & Jegelka, 2017) that generates the worst-case
adversarial example by independently perturbing each data sample.

Different from AT, Distributional Robustness (DR) (Delage & Ye, 2010; Duchi et al., 2021; Gao
et al., 2017; Gao & Kleywegt, 2016; Rahimian & Mehrotra, 2019) looks for a worst-case distribution
that generates adversarial examples from a known uncertainty set of distributions located in the
ball centered around the data distribution. To measure the distance between distributions, different
kinds of metrics have been considered in DR, such as f -divergence (Ben-Tal et al., 2013; Miyato
et al., 2015; Namkoong & Duchi, 2016) and Wasserstein distance (Shafieezadeh-Abadeh et al., 2015;
Blanchet et al., 2019; Kuhn et al., 2019), where the latter has shown advantages over others on
efficiency and simplicity (Staib & Jegelka, 2017; Sinha et al., 2018). Therefore, adversary in DR
does not look for the perturbation of a specific data sample, but moves the entire distribution around
the data distribution, thus, is expected to have better generalization than AT on unseen data samples

1Our code is available at https://github.com/tuananhbui89/Unified-Distributional-Robustness
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(Staib & Jegelka, 2017; Sinha et al., 2018). Conceptually and theoretically, DR can be viewed as
a generalization and better alternative to AT and several attempts (Staib & Jegelka, 2017; Sinha
et al., 2018) have shed light on connecting AT with DR. However, to the best of our knowledge,
practical DR approaches that achieve comparable peformance with SOTA AT methods on adversarial
robustness have not been developed yet.

To bridge this gap, we propose a unified framework that connects distributional robustness with
various SOTA AT methods. Built on top of Wasserstein Distributional Robustness (WDR), we
introduce a new cost function of the Wasserstein distances and propose a unified formulation of the
risk function in WDR, with which, we can generalize and encompass SOTA AT methods in the DR
setting, including PGD-AT (Madry et al., 2018), TRADES (Zhang et al., 2019), MART (Wang et al.,
2019) and AWP (Wu et al., 2020). With better generalization capacity of distributional robustness,
the resulted AT methods in our DR framework are shown to be able to achieve better adversarial
robustness than their standard AT counterparts.

The contributions of this paper are in both theoretical and practical aspects, summarized as follows:
1) Theoretically, we propose a general framework that bridges distributional robustness and standard
robustness achieved by AT. The proposed framework encompasses the DR versions of the SOTA AT
methods and we prove that these AT methods are special cases of their DR counterparts. 2) Practically,
motivated by our theoretical study, we develop a novel family of algorithms that generalize the AT
methods in the standard robustness setting, which have better generalization capacity. 3) Empirically,
we conduct extensive experiments on benchmark datasets, which show that the proposed AT methods
in the distributional robustness setting achieve better performance than standard AT methods.

2 PRELIMINARIES

2.1 DISTRIBUTIONAL ROBUSTNESS

Distributional Robustness (DR) is an emerging framework for learning and decision-making under
uncertainty, which seeks the worst-case expected loss among a ball of distributions, containing all
distributions that are close to the empirical distribution (Gao et al., 2017). Wasserstein DR has been
one of the most widely-used variant of DR, which has rich applications in (semi)-supervised learning
(Blanchet & Kang, 2020; Chen & Paschalidis, 2018; Yang, 2020), generative modeling (Huynh et al.,
2021; Dam et al., 2019), transfer learning and domain adaptation (Lee & Raginsky, 2018; Duchi et al.,
2019; Zhao et al., 2019a; Nguyen et al., 2021a;b; Le et al., 2021b;a), topic modeling (Zhao et al.,
2021b), and reinforcement learning (Abdullah et al., 2019; Smirnova et al., 2019; Derman & Mannor,
2020). For more comprehensive review, please refer to the surveys of Kuhn et al. (2019); Rahimian
& Mehrotra (2019). Here we consider a generic Polish space S endowed with a distribution P. Let
f : S → R be a real-valued (risk) function and c : S × S → R+ be a cost function. Distributional
robustness setting aims to find the distribution Q in the vicinity of P and maximizes the risk in the E
form (Sinha et al., 2018; Blanchet & Murthy, 2019):

sup
Q:Wc(P,Q)<ε

EQ [f (z)] , (1)

where ε > 0 and Wc denotes the optimal transport (OT) cost, or a Wasserstein distance if c is a
metric, defined as:

Wc (P,Q) := inf
γ∈Γ(P,Q)

∫
cdγ, (2)

where Γ (P,Q) is the set of couplings whose marginals are P and Q. With the assumption that
f ∈ L1 (P) is upper semi-continuous and the cost c is a non-negative lower semi-continuous
satisfying c(z, z′) = 0 iff z = z′, Sinha et al. (2018); Blanchet & Murthy (2019) show that the dual
form for Eq. (1) is:

inf
λ≥0

{
λε+ E

z∼P

[
sup
z′
{f (z′)− λc (z′, z)}

]}
. (3)

Sinha et al. (2018) further employs a Lagrangian for Wasserstein-based uncertainty sets to arrive at a
relaxed version with λ ≥ 0:

sup
Q
{EQ [f (z)]− λWc (P,Q)} = E

z∼P

[
sup
z′
{f (z′)− λc (z′, z)}

]
. (4)
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2.2 ADVERSARIAL ROBUSTNESS WITH ADVERSARIAL TRAINING

In this paper, we are interested in image classification tasks and focus on the adversaries that add
small perturbations to the pixels of an image to generate attacks based on gradients, which are the
most popular and effective. FGSM (Goodfellow et al., 2015) and PGD (Madry et al., 2018) are
the most representative gradient-based attacks and PGD is the most widely-used one, due to its
effectiveness and simplicity. Now we consider a classification problem on the space S = X × Y
where X is the data space, Y is the label space. We would like to learn a classifier that predicts the
label of a datum well hθ : X → Y . Learning of the classifier can be done by minimising its loss:
` (hθ (x) , y), which can typically be the the cross-entropy loss. In addition to predicting well on
benign data, an adversarial defense aims to make the classifier robust against adversarial examples.
As the most successful approach, adversarial training is a straightforward method that creates and
then incorporates adversarial examples into the training process. With this general idea, different AT
methods vary in the way of picking which adversarial examples one should train on. Here we list
three widely-used AT methods.

PGD-AT (Madry et al., 2018) seeks the most violating examples to improve model robustness:

inf
θ

EP

[
β sup
x′∈Bε(x)

CE
(
hθ
(
x′
)
, y
)
+ CE (hθ (x) , y)

]
, (5)

where Bε (x) = {x′ : cX (x, x′) ≤ ε}, β > 0 is the trade-off parameter and cross-entropy loss CE.

TRADES (Zhang et al., 2019) seeks the most divergent examples to improve model robustness:

inf
θ

EP

[
β sup

x′
DKL

(
hθ
(
x′
)
, hθ (x)

)
+ CE (hθ (x) , y)

]
, (6)

where x′ ∈ Bε (x) and DKL is the usual Kullback-Leibler (KL) divergence.

MART (Wang et al., 2019) takes into account prediction confidence:

inf
θ

EP

[
β
(
1− [hθ (x)]y

)
sup

x′∈Bε(x)
DKL

(
hθ
(
x′
)
, hθ (x)

)
+BCE (hθ (x) , y)

]
, (7)

where BCE (hθ (x) , y) is defined as: − log
(

[hθ (x)]y

)
− log (1−maxk 6=y [hθ (x)]k).

2.3 CONNECTING DISTRIBUTIONAL ROBUSTNESS TO ADVERSARIAL TRAINING

To bridge distributional and adversarial robustness, Sinha et al. (2018) proposes an AT method,
named Wasserstein Risk Minimization (WRM), which generalizes PGD-AT through the principled
lens of distributionally robust optimization. For smooth loss functions, WRM enjoys convergence
guarantees similar to non-robust approaches while certifying performance even for the worst-case
population loss. Specifically, assume that P is a joint distribution that generates a pair z = (x, y)
where x ∈ X and y ∈ Y . The cost function is defined as: c (z, z′) = cX (x, x′) +∞× 1 {y 6= y′}
where z′ = (x′, y′), cX : X × X → R+ is a cost function on X , and 1 {·} is the indicator function.
One can define the risk function f as the loss of the classifier, i.e., f (z) := ` (hθ (x) , y). Together
with Eq. (1), attaining a robust classifier is to solve the following min-max problem:

inf
θ

sup
Q:Wc(P,Q)<ε

EQ [` (hθ (x) , y)] . (8)

The above equation shows the generalisation of WRM to PGD-AT. With Eq. (3) and Eq. (4), one can
arrive at Eq. (9) as below where λ ≥ 0 is a trade-off parameter:

inf
θ
EP

[
sup
x′
{` (hθ (x′) , y)− λcX (x′, x)}

]
. (9)

3 PROPOSED UNIFIED DISTRIBUTION ROBUSTNESS FRAMEWORK

Although WRM (Sinha et al., 2018) sheds light on connecting distributional robustness with adver-
sarial training, its framework and formulation is limited to PGD-AT, which cannot encompass more
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advanced AT methods including TRADES and MART. In this paper, we propose a unified formulation
for distributional robustness, which is a more general framework connecting state-of-the-art AT and
existing distributional robustness approaches where they become special cases.

Let Pd be the data distribution that generates instance x ∼ Pd and Pl.|x the conditional to generate
label y ∼ Pl.|x given x where x ∈ X , y ∈ Y . For our purpose, we consider the space S = X ×X ×Y
and a joint distribution P4 on S consisting of samples (x, x, y) where x ∼ Pd and y ∼ Pl.|x. Now
consider a distribution Q on S such that Wc (Q,P4) < ε. A draw z ∼ P4 will take the form
z = (x, x, y) whereas z′ ∼ Q will be z′ = (x′, x′′, y′). We propose cost function c(z, z′) defined as:

c(z, z′) = cX (x, x′) +∞× cX (x, x′′) +∞× 1 {y 6= y′} , (10)
where we note that this cost function is non negative, satisfies c(z, z) = 0 and lower semi-continuous,
i.e., lim

z′→z0
inf c(z, z′) ≥ c(z, z0).

With our new setting, it is useful to understand the “vicinity”of P∆ via the distribution OT-ball
conditionWc (Q,P4) < ε. Since there exists a transport plan γ ∈ Γ (P4,Q) s.t.

∫
cdγ < ε and

c(z, z′) is finite a.s. γ, this implies that if (z, z′) ∼ γ, then first, it is easy to see that x′′ = x
and y′ = y, and second, x′ tends to be close to x. To see why the later is the case, since Pd is a
marginal of P4 on the first x in (x, x, y), therefore if Qd is the marginal of Q on x′ in (x′, x′′, y′)
thenWd

(
Qd,Pd

)
≤ Wd (Q,P4) < ε, which explains the closeness between of x and x′.

Given z′ = (x′, x′′, y′) ∼ Q whereWc (Q,P4) < ε, we define a unified risk function gθ (z′) w.r.t
a classifier hθ that encompasses the unified distributional robustness (UDR) version for PGD-AT,
TRADES, and MART (cf Section 2.2):

• UDR-PGD: gθ (z′) := CE (hθ (x′′) , y′) + βCE (hθ (x′) , y′).
• UDR-TRADES: gθ (z′) := CE (hθ (x′′) , y′) + βDKL (hθ (x′) , hθ (x′′)).
• UDR-MART: gθ (z′) := BCE (hθ (x′′) , y′) +β(1− [hθ (x′′)]y)DKL (hθ (x′) , hθ (x′′)) .2

Now we derive the primal and dual objectives for the proposed UDR framework. With the UDR risk
function gθ(z′) defined previously, following Eq. (1) and Eq. (3), the primal (left) and dual (right)
forms of our UDR objective are:

inf
θ

sup
Q:Wc(Q,P4)<ε

EQ [gθ (z′)] = inf
θ

inf
λ≥0

(
λε+ EP4

[
sup
z′
{gθ (z′)− λc (z′, z)}

])
. (11)

With the cost function c defined in Eq. (10), the dual form in (11) can be rewritten as:

inf
θ,λ≥0

(
λε+ EP∆

[
sup

x′,x′′=x,y′=y
{gθ (z′)− λcX (x′, x)}

])
=

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λcX (x′, x)}

])
(12)

where we note that P is a distribution over pairs (x, y) for which x ∼ Pd and y ∼ Pl.|x. The min-max
problem in Eq. (12) encompasses the PGD-AT, TRADES, and MART distributional robustness
counterparts on the choice of the function gθ (x′, x, y) by simply choosing an appropriate gθ (x′, x, y)
as shown in Section 2.3.

In what follows, we prove that standard PGD-AT, TRADES, and MART presented in Section 2 are
specific cases of their UDR counterparts by specifying corresponding cost functions. Given a cost
function cX (e.g., L1, L2, and L∞), we define a new cost function c̃X as:

c̃X (x, x′) =

{
cX (x, x′) if cX (x, x′) ≤ ε
∞ otherwise.

(13)

The cost function c̃X is lower semi-continuous. By defining the ball Bε (x) :=
{x′ : cX (x, x′) ≤ ε} = {x′ : c̃X (x, x′) ≤ ε} , we achieve the following theorem on the relation
between distributional and standard robustness.

2To encompass MART with our framework, we assume a classifier is adversarially trained by Eq. (7) with
adversarial examples generated by supx′∈Bε(x)DKL (hθ (x

′) , hθ (x))+BCE (hθ (x) , y). This is slightly dif-
ferent from the original MART, where the adversarial examples are generated by supx′∈Bε(x) CE (hθ (x

′) , y).
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Theorem 1. With the cost function c̃x defined as above, the optimization problem:

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

])
(14)

is equivalent to the optimization problem:

inf
θ
EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (15)

Proof. See Appendix A for the proof.

Theoretical contribution and comparison to previous work. Theorem 1 says that the standard
PGD-AT, TRADES, and MART are special cases of their UDR counterparts, which indicates that our
UDR versions of AT have a richer expressiveness capacity than the standard ones. Different from
WRM (Sinha et al., 2018) , our proposed framework is developed based on theoretical foundation of
(Blanchet & Murthy, 2019). It is worth noting that the theoretical development is not trivial because
theory developed in Blanchet & Murthy (2019) is only valid for a bounded cost function, while the
cost function c̃ is unbounded. More specifically, the transformation from primal to dual forms in
Eq. (11) requires the cost function c to be bounded. In Theorem 2 in Appendix A, we prove this
primal-dual form transformation for the unbounded cost function c̃X , which is certainly not trivial.

Moreover, our UDR is fundamentally distinctive from WRM in its ability to adapt and learn λ, while
this is a hyper-parameter in WRM. As a result of a fixed λ, WRM is fundamentally same as PGD in
the sense that these methods can only utilize local information of relevant benign examples when
crafting adversarial examples. In contrast, our UDR can leverage both local and global information
of multiple benign examples when crafting adversarial examples due to the fact that λ is adaptable
and captures the global information when solving the outer minimization in (14). Further explanation
can be found in Appendix B.

4 LEARNING ROBUST MODELS WITH UDR

In this section we introduce the details of how to learn robust models with UDR. To do this, we
first discuss the induced cost function c̃X defined as in Eq (13), which assists us in understanding
the connection between distributional and standard robustness approaches. We note that c̃X is non-
differential outside the perturbation ball (i.e., cX (x′, x) ≥ ε). To circumvent this, we introduce a
smoothed version ĉX to approximate c̃X as follows:

ĉX (x, x′) := 1 {cX (x, x′) < ε} cX (x, x′) + 1 {cX (x, x′) ≥ ε}
(
ε+

cX (x, x′)− ε
τ

)
, (16)

where τ > 0 is the temperature to control the growing rate of the cost function when x′ goes out
of the perturbation ball. It is obvious that ĉX (x, x′) is continuous and approaches c̃X (x, x′) when
τ → 0. Using the smoothed function ĉX (x, x′) from Eq. (16), the final object of our UDR becomes:

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λĉX (x′, x)}

])
. (17)

With this final objective, our training strategy involves three iterative steps at each iteration w.r.t. a
batch of data examples, which are shown in Algorithm 1.

1. Craft adversarial examples w.r.t. the current model and the parameter λ. Given the current
model θ and the parameter λ, we find the adversarial examples by solving:

xa = argmaxx′ {gθ(x′, x, y)− λĉX (x′, x)} , (18)

where different methods (i.e., UDR-PGD, UDR-TRADES, etc.) specifies gθ(x′, x, y) differently.

Similar to other AT methods like PGD-AT, we employ iterative gradient ascent update steps to
optimise to find xa. Specifically, we start from a random example inside the ball Bε and update in k
steps with the step size η > 0. Since the magnitude of the gradient ∇x′gθ(x′, x, y) is significantly
smaller than that of ∇x′ ĉ X (x′, x), we use sign (∇x′ ĉX (x′, x)) in the update formula rather than
∇x′ ĉX (x′, x). These steps are shown in 2(a) to 2(c) of Algorithm 1.
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Algorithm 1 The pseudocode of our proposed method.
Input: training set D, number of iterations T , batch size N ,
adversary parameters {k, ε, η}
for t = 1 to T do

1. Sample mini-batch {xi, yi}Ni=1 ∼ D
2. Find adversarial examples {xai }Ni=1 using Eq. (18)

(a) Initialize randomly: x0
i = xi + noise where

noise ∼ U(−ε, ε)
(b) for n = 1 to k do

i. xinteri = xni + ηsign (∇xgθ(xni , xi, yi))
ii. xn+1

i = xinteri − ηλ∇xĉ(xinteri , xi)

(c) Clip to valid range: xai = clip(xki , 0, 1)

3. Update parameter λ using Eq. (19)
4. Update model parameter θ using Eq. (20)

Output: model parameter θ

An important difference from ours to
other AT methods is that at each up-
date step, we do not apply any explicit
projecting operations onto the ball Bε.
Indeed, the parameter λ controls how
distant xa to its benign counterpart
x. Thus, this can be viewed as im-
plicitly projecting onto a soft ball gov-
erned by the magnitude of the param-
eter λ and the temperature τ . Specif-
ically, when λ becomes higher, the
crafted adversarial examples xa stay
closer to their benign counterparts x
and vice versa. When τ is set closer to
0, the smoothed cost function ĉX ap-
proximates the cost function c̃X more
tightly. Thus, our soft-ball projection
is more identical to the hard ball pro-
jection as in projected gradient ascent.

2. Update the parameter λ. Given
current model θ, we craft a batch of adversarial examples {xai }Ni=1 corresponding to the benign
examples {xi}Ni=1 crafted as above. Inspired by the Danskin’s theorem , we update λ as follows:

λn = λ− ηλ

(
ε− 1

N

N∑
i=1

ĉX (xai , xi)

)
, (19)

where ηλ > 0 is a learning rate and λn represents the new value of λ.

The proposed update of λ is intuitive: if the adversarial examples stay close to their benign examples,
i.e.,

∑N
i=1 ĉX (xai , xi) < ε, λ decreases to make them more distant to the benign examples and vice

versa. Therefore the adversarial examples are crafted more diversely, which can further strengthen
the robustness of the model.

3. Update the model parameter θ. Given the set of adversarial examples {xai }Ni=1 crafted as above
and their benign examples {xi}Ni=1 with the labels {yi}Ni=1, we update the model parameter θ to
minimize EP [∇gθ(xa, x, y)] using the current batches of adversarial and benign examples:

θn = θ − ηθ
N

N∑
i=1

∇θgθ(xai , xi, yi), (20)

where ηθ > 0 is a learning rate and θn specifies the new model parameter.

5 EXPERIMENTS

We use MNIST (LeCun et al., 1998), CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) as the
benchmark datasets in our experiment. The inputs were normalized to [0, 1]. We apply padding 4
pixels at all borders before random cropping and random horizontal flips as used in Zhang et al.
(2019). We use both standard CNN architecture (Carlini & Wagner, 2017) and ResNet architecture
(He et al., 2016) in our experiment. The architecture and training setting are provided in Appendix D.

We compare our UDR with the SOTA AT methods, i.e., PGD-AT (Madry et al., 2018), TRADES
(Zhang et al., 2019) and MART (Wang et al., 2019). Because TRADES and MART performances
are strongly dependent on the trade-off ratio (i.e., β in Eq. (6) and (7)) between natural loss
and robust loss, we use the original setting in their papers (CIFAR10/CIFAR100: β = 6 for
TRADES/UDR-TRADES, β = 5 for MART/UDR-MART; MNIST: β = 1 for all the methods). We
also tried with the distributional robustness method WRM (Sinha et al., 2018). However, WRM
did not seem to obtain reasonable performance in our experiments. Its results can be found in
Appendix F. For all the AT methods, we use {k = 40, ε = 0.3, η = 0.01} for the MNIST dataset,
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Table 1: Comparisons of natural classification accuracy (Nat) and adversarial accuracies against
different attacks. Best scores are highlighted in boldface.

MNIST CIFAR10 CIFAR100

Nat PGD AA B&B Nat PGD AA B&B Nat PGD AA B&B
PGD-AT 99.4 94.0 88.9 91.3 86.4 46.0 42.5 44.2 72.4 41.7 39.3 39.6

UDR-PGD 99.5 94.3 90.0 91.4 86.4 48.9 44.8 46.0 73.5 45.1 41.9 42.3
TRADES 99.4 95.1 90.9 92.2 80.8 51.9 49.1 50.2 68.1 49.7 46.7 47.2

UDR-TRADES 99.4 96.9 92.2 95.2 84.4 53.6 49.9 51.0 69.6 49.9 47.8 48.7
MART 99.3 94.7 90.6 92.9 81.9 53.3 48.2 49.3 68.1 49.8 44.8 45.4

UDR-MART 99.3 96.0 92.3 94.4 80.1 54.1 49.1 50.4 67.5 52.0 48.5 48.6

Table 2: Robustness evaluation under different PGD attack
strengths ε. Avg represents for the average improvement of our
DR methods over their counterparts.

MNIST
ε 0.3 0.325 0.35 0.375 0.4 0.425 Avg

PGD-AT 94.0 67.8 21.1 6.8 2.3 1.2 -
UDR-PGD 94.3 92.9 90.1 79.2 22.3 3.8 31.57

TRADES 95.5 85.2 34.4 5.8 0.6 0.1 -
UDR-TRADES 96.9 96.9 95.8 95.1 94.5 88.5 57.68

MART 94.7 66.1 9.4 0.9 0.2 0.1 -
UDR-MART 96.0 95.0 94.1 92.8 88.8 37.7 55.5

CIFAR10
ε 8

255
10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT 46.0 33.7 23.7 15.2 9.5 3.6 -
UDR-PGD 48.9 36.4 26.3 18.5 13.0 7.1 3.08

TRADES 51.9 42.5 33.7 25.7 18.9 9.1 -
UDR-TRADES 53.6 43.6 35.2 27.5 20.7 10.9 1.62

MART 53.3 43.2 34.1 25.5 18.4 9.0 -
UDR-MART 54.1 46.0 37.3 29.7 22.9 12.2 3.12

CIFAR100
ε 10

1000
12.5
1000

15
1000

17.5
1000

20
1000

25
1000 Avg

PGD-AT 41.7 34.5 27.8 22.6 18.2 11.7 -
UDR-PGD 45.1 38.3 31.9 26.2 21.4 14.2 3.43

TRADES 49.7 44.3 39.9 35.2 31.2 23.5 -
UDR-TRADES 49.9 44.8 40.3 35.7 31.7 24.2 0.47

MART 49.8 45.3 41.0 36.6 32.4 25.1 -
UDR-MART 52.0 47.8 44.1 40.2 36.2 29.4 3.25

(a) Natural/robust accuracy trade-off

(b) Robustness in correlation with τ

Figure 1: Further analysis on param-
eter sensitivity.

{k = 10, ε = 8/255, η = 2/255} for the CIFAR10 dataset and {k = 10, ε = 0.01, η = 0.001} for
the CIFAR100 dataset, where k is number of iteration, ε is the distortion bound and η is the step size
of the adversaries.

We use different SOTA attacks to evaluate the defense methods including: 1) PGD attack (Madry
et al., 2018) which is one of the most widely-used gradient based attacks. For PGD, we set k = 200
and ε = 0.3, η = 0.01 for MNIST, ε = 8/255, η = 2/255 for CIFAR10, and ε = 0.01, η = 0.001
for CIFAR100, which are the standard settings. 2) B&B attack (Brendel et al., 2019) which is a
decision based attack. Following Tramer et al. (2020), we initialized with the PGD attack with k = 20
and corresponding {ε, η} then apply B&B attack with 200 steps. 3) Auto-Attack (AA) (Croce &
Hein, 2020b) which is an ensemble methods of four different attacks. We use ε = 0.3, 8/255, 0.01,
for MNIST, CIFAR10, and CIFAR100, respectively. The distortion metric we use in our experiments
is l∞ for all measures. We use the full test set for PGD and 1000 test samples for the other attacks.
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Table 3: Adversarial accuracy in the blackbox settings. Avg represents for the average improvement
of our DR methods over their counterparts.

Target
Source PGD-AT UDR-P TRADES UDR-T MART UDR-M Avg

PGD-AT - - 61.6 61.6 61.7 62.4 -
UDR-PGD - - 63.6 63.4 64.0 64.1 2.0

TRADES 61.2 61.3 - - 58.9 59.8 -
UDR-TRADES 62.7 62.8 - - 61.1 61.6 1.8

MART 61.4 61.4 58.9 59.5 - - -
UDR-MART 62.3 62.1 60.1 60.5 - - 1.0

5.1 MAIN RESULTS

Whitebox Attacks with fixed ε. First, we compare the natural and robust accuracy of the AT
methods and their counterparts under our UDR framework, against several SOTA attacks. Note
that in this experiment, the attacks are with their standard settings. The result of this experiment
is shown in Table 1. It can be observed that for all the AT methods, our UDR versions are able to
boost the model robustness significantly against all the strong attack methods in comparison on all
the three datasets. These improvements clearly show that our UDR empowered AT methods achieve
the SOTA adversarial robustness performance. Specifically, our UDR-PGD’s improvement over PGD
on both CIFAR10 and CIFAR100 is over 3% against all the attacks. Similarly, our UDR-MART also
improves over MART with a 3% gap on CIFAR100.

Whitebox Attacks with varied ε. Recall that UDR is designed to have better generalization capacity
than standard adversarial robustness. In this experiment, we exam the generalization capacity by
attacking the AT methods (including our UDR variants) with PGD with varied attack strength ε while
keeping other parameters of PGD attack the same. This is a highly practical scenario where attackers
may use various attack strengths that are different from that the model is trained with. The results
of this experiment are shown in Table 2. We have the following remarks of the results: 1) All AT
methods perform reasonably well (our UDR variants are better than their counterparts) when PGD
attacks with the same ε that these methods are trained on. This is shown in the first column on all the
datasets, whose results are in line with these in Table 1. 2) With increased ε, the performance of all
the AT methods deteriorates, which is natural. However, the advantage of our UDR methods over
their counterparts becomes more and more significant. For example, when ε = 0.375, all of our UDR
methods can achieve at least 80% robust accuracy on MNIST, while others can barely defend. This
clearly demonstrates the benefit of our UDR framework on generalization capacity.

Table 4: Robustness evaluation against Auto-
Attack and PGD (k = 100) with WRN-34-10 on
the full test set of CIFAR10 dataset. (*) Omit the
cross-entropy loss of natural images. Detail can be
found in Appendix D.

Nat PGD AA C&W
PGD-AT* 84.93 55.04 52.12 40.85
UDR-PGD* 84.60 55.71 52.98 47.31
TRADES 85.70 56.97 53.82 47.65
UDR-TRADES 84.93 57.35 54.45 49.14
AWP-AT 85.57 57.78 53.91 49.91
UDR-AWP-AT 85.51 58.65 54.40 54.44
Zhang et al. (2020a) 84.52 - 53.51 -
Huang et al. (2020) 83.48 - 53.34 -
Zhang et al. (2019) 84.92 - 53.08 -
Cui et al. (2021) 88.22 - 52.86 -

Blackbox Attacks. To further exam the gen-
eralization of the UDR framework, we conduct
the experiment with the blackbox setting via
transferred attacks. Specifically, we use PGD
to generate adversarial examples according to
the model trained with a specific AT method,
i.e., the source method. Next, we use the gen-
erated adversarial examples to attack another
AT method, i.e., the target method. This is to
see whether an AT method can defend against
attacks generated from other models. We report
the results in Table 3. It can be seen that with
better generalization capacity, our UDR meth-
ods also outperform their standard counterparts
with a margin of 2% in the blackbox setting.

Results with WideResNet architecture. We
would like to provide further experimental re-
sults on the CIFAR10 dataset with WideResNet (WRN-34-10) as shown in Table 4. It can be seen
that our distributional frameworks consistently outperform their standard AT counterparts in both
metrics. More specifically, our improvement over PGD-AT against Auto-Attack is around 0.8%,
while that for TRADES is 0.5%. To make a more concrete conclusion, we deploy our framework on a
recent SOTA standard AT which is AWP-AT Wu et al. (2020). The result shows that our distributional
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Table 5: Average norm L1 and L∞ of the perturbation δ = |xa − x|p

L1 L∞ p(δ ≤ 0.9ε) p(δ ≤ ε) p(δ ≤ 1.1ε)
PGD 0.0270 0.031 19.7% 100% 100%
UDR-PGD at epoch 0th 0.0278 0.031 18.9% 100% 100%
UDR-PGD at epoch 200th 0.0301 0.034 19.5% 22.1% 100%

Table 6: Comparison to PGD-AT with different perturbation limitations.

8
255

10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT at ε = 0.031 46.0 33.7 23.7 15.2 9.5 3.6 -
PGD-AT at ε = 0.034 46.7 34.8 24.7 16.2 10.1 3.7 0.75
PGD-AT at ε = 0.037 44.9 33.3 23.7 15.6 10.0 3.8 -0.07
UDR-PGD at ε = 0.031 48.9 36.4 26.3 18.5 13.0 7.1 3.08

robustness version (UDR-AWP-AT) also improves its counterpart by 0.5%. With the same setting
(i.e., same architecture and without additional data), our UDR-TRADES and UDR-AWP-AT achieve
better robustness than recently listed methods on RobustBench (Croce et al., 2020).3 Remarkably, the
additional experiment with C&W (L2) attack shows a significant improvement of our distributional
methods over standard AT by around 5%. More discussion can be found in Appendix F.

5.2 ANALYTICAL RESULTS

Benefit of the soft-ball projection. Here we would like to analytically study why our UDR
methods are better than standard AT methods, by taking UDR-PGD and PGD-AT as examples.
The visualization on the synthetic dataset can be found in Appendix E. Recall that one of the key
differences between UDR-PGD and PGD-AT is that the former uses the soft-ball projection and the
later use the hard-ball one, discussed in the second paragraph under Eq. (18). More specifically, Table
5 reports the average norm (L1 andL∞) of the perturbation δ = |xa − x|p in PGD and our UDR-PGD.
It can be seen that: (i) At the beginning of the training process, there is no difference between the
norms of the perturbations generated by PGD and our UDR-PGD. More specifically, most of the pixels
lie on the edge of the hard-ball projection (i.e., p(0.9ε ≤ δ ≤ ε) = p(δ ≤ ε)− p(δ ≤ 0.9ε) > 80%).
(ii) When our model converges, there are 77.9% pixels lying slightly beyond the hard-ball projection
(i.e., p(δ > ε)). It is because our soft-ball projection can be adaptive based on the value of . This
flexibility helps the adversarial examples reach a better local optimum of the prediction loss, therefore,
benefits the adversarial training.

Next, we show that doing PGD adversarial training with larger ε cannot achieve the same defence
performance as our methods with the soft-ball projection. We conduct more experiments with
PGD-AT with ε = 0.034 (the final when our model converages) and ε = 0.037 to show that simply
extending the hard-ball projection doesn’t benefit adversarial training. More specifically, the average
robustness improvement with ε = 0.034 is 0.75%, while there is no improvement with ε = 0.037.

Parameter sensitivity of τ . Figure 1a and 1b show the our framework’s sensitivity to τ on CIFAR10
under the PGD attack. It can be observed that overly small values of τ can hardly improve adversarial
robustness while overly big values of τ may hurt the natural performance (accnat = 68.7% with
τ = 1.0). Empirically, we find that τ = 2η performs well in our experiments.

6 CONCLUSIONS

In this paper, we have presented a new unified distributional robustness framework for adversarial
training, which unifies and generalizes standard AT approaches with improved adversarial robustness.
By defining a new family of risk functions, our framework facilitates the development of the distri-
butional robustness counterparts of the SOTA AT methods including PGD-AT, TRADES, MART
and AWP. Moreover, we introduce a new cost function, which enables us to bridge the connections
between standard AT methods and their distributional robustness counterparts and to show that the
former ones can be viewed as the special cases of the later ones. Extensive experiments on the
benchmark datasets including MNIST, CIFAR10, CIFAR100 show that our proposed algorithms are
able to boost the model robustness against strong attacks with better generalization capacity.

3RobustBench reported a robust accuracy of 56.17% for AWP-TRADES version from Wu et al. (2020) which
is higher than ours but might not be used as a reference.
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A THEORETICAL DEVELOPMENT

Theorem 1. With the cost function c̃X defined as above , the optimization problem:

inf
θ,λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}
(21)

is equivalent to the optimization problem:

inf
θ
EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (22)

Proof. We need to prove that

inf
λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}
= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (23)

By the definition of the cost function c̃X , the LHS of (23) can be rewritten as:

min

{
inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{
gθ
(
x′, x, y

)
− λcX

(
x′, x

)}]}
,EP

[
sup
x′
gθ
(
x′, x, y

)]}
. (24)

Given any λ > 0 and x′ ∈ Bε (x), we have

λε+ gθ (x′, x, y)− λcX (x′, x) = gθ (x′, x, y) + λ (ε− cX (x′, x)) ≥ EP [gθ (x′, x, y)] .

Hence, we arrive at

λε+ sup
x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)} ≥ sup
x′∈Be(x)

gθ (x′, x, y) .

λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]
≥ EP

[
sup

x′∈Be(x)

gθ (x′, x, y)

]
.

which follows that

inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]}

≥ EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (25)
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We now prove the inequality

lim
λ→0+

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
.

Take a sequence {λn}n≥1 → 0+. Given a feasible pair (x, y), we define

fn (x′;x, y) := gθ (x′, x, y) + λn [ε− cX (x′, x)] ,∀x′ ∈ Bε (x) .

It is evident that fn (x′;x, y) converges pointwise to gθ (x′, x, y) over the compact set Bε (x). There-
fore, fn (x′;x, y) converges uniformly to gθ (x′, x, y) on this set. This follows that

∀α > 0,∃n0 = n (α) : |fn (x′;x, y)− gθ (x′, x, y)| < α,∀x′ ∈ Bε (x) , n ≥ n0.

Hence, we obtain for all x′ ∈ Bε (x) and n ≥ n0:

gθ (x′, x, y)− α < fn (x′;x, y) < gθ (x′, x, y) + α.

This leads to the following for all n ≥ n0:

sup
x′∈Bε(x)

gθ (x′, x, y)− α ≤ sup
x′∈Bε(x)

fn (x′;x, y) ≤ sup
x′∈Bε(x)

gθ (x′, x, y) + α.

Therefore, we obtain:

lim
n→∞

sup
x′∈Bε(x)

fn (x′;x, y) = sup
x′∈Bε(x)

gθ (x′, x, y)

for all feasible pairs (x, y), which further means that

lim
n→∞

EP

[
sup

x′∈Bε(x)

fn (x′;x, y)

]
= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
,

or equivalently

lim
n→∞

EP

[
λnε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λncX (x′, x)}

]]
= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
.

(26)

Because Eq. (26) holds for every sequence {λn}n≥1 → 0+, we reach

lim
λ→0+

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (27)

By combining (25) and (27), we reach

inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (28)
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Finally, we have

inf
λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}
= min

{
inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}

]}
,EP

[
sup
x′
gθ (x′, x, y)

]}

= min

{
EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
,EP

[
sup
x′
gθ (x′, x, y)

]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
.

That concludes our proof.

One of most technical challenge we need to bypass in our work is that in theory developed in Blanchet
& Murthy (2019), to equivalently transform the primal form to the dual form, it requires the cost
function to be finite. In the following theorem, we reprove the equivalence of the primal and dual
forms in our context.
Theorem 2. Assume that the function g is upper-bounded by a number L. We have the following
equality between the primal form and dual form

sup
Q:Wc(Q,P4)<ε

EQ [g (z′)] = inf
λ≥0

{
λε+ EP4

[
sup
z′
{g (z′)− λc (z′, z)}

]}
,

where z = (x, x, y), z′ = (x′, x′′, y′), and we have defined

c (z, z′) = c̃X (x, x′) +∞× c̃X (x, x′′) +∞× 1 {y 6= y′} ,
for which we have defined

c̃X (x, x′) =

{
cX (x, x′) if cX (x, x′) ≤ ε
∞ otherwise.

Proof. Given a positive integer number n > 0, we define the following metrics:

cn (z, z′) = c̃nX (x, x′) +∞× c̃nX (x, x′′) +∞× 1 {y 6= y′} ,

c̃nX (x, x′) =

{
cX (x, x′) if cX (x, x′) < ε.

n otherwise.

We have c̃nX ↗ c̃X and cn ↗ c. We now prove that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] = inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

In fact, for each n, we have cn ≤ c. Therefore, Wcn (Q,P4) ≤ Wc (Q,P4), hence
{Q :Wc (Q,P4) < ε} ⊂ {Q :Wcn (Q,P4) < ε}, implying that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≤ sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≤ inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

Let us define

A = ∪(x,y)∈D {(z, z′) : z = (x, x, y) , z′ = (x′, x′′, y′) , cX (x, x′) < ε, x′′ = x, y′ = y} ,

B = ∪(x,y)∈D {(z, z′) : z = (x, x, y) , z′ = (x′, x′′, y′) , cX (x, x′) ≥ ε, x′′ = x, y′ = y} .
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To simplify our proof, without generalization ability, for each n, we denote Qn as the distribution in
{Q :Wcn (Q,P4) < ε} that peaks EQ [gθ (z′)] and γn as the optimal transport plan ofWcn (Qn,P4)
which admits P4 and Qn as its marginals. Note that becauseWcn (Qn,P4) < ε, the support of γn
almost surely determines on A ∪B.We then have

Wcn (Qn,P4) =

∫
cn (z, z′) dγn (z, z′)

=

∫
A

cn (z, z′) dγn (z, z′) +

∫
B

cn (z, z′) dγn (z, z′)

=

∫
A

cX (x, x′) dγn (z, z′) +

∫
B

ndγn (z, z′)

=

∫
A

cX (x, x′) dγn (z, z′) + nγn (B) < ε.

Therefore, we obtain: γn (B) < ε
n . We now define γ̄n as a restricted measure of γn on A, meaning

that γ̄n (C) = γn(A)+γn(B)
γn(A) γn (C) =

(
1 + o

(
n−1

))
γn (C) for any measure set C ⊂ A, where

limn→∞ o
(
n
−1
)

= 0. Let Pn as marginal distribution of Qn corresponding to the dimensions of z′.
It appears that

Wc (Pn,P4) ≤
∫
A

c (z, z′) dγ̄n (z, z′) +

∫
B

c (z, z′) dγ̄n (z, z′)

(1)
=

∫
A

cX (x, x′) dγ̄n (z, z′) <

∫
A

εdγ̄n (z, z′) = ε.

Note that we have
(1)
= because γ̄n (B) = 0.

This implies that Pn ∈ {Q :Wc (Q,P4) < ε}, which follows that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≥ EPn [gθ (z′)] = Eγ̄n [g (z′)]

=

∫
A

g (z′) dγ̄n (z, z′) +

∫
B

g (z′) dγ̄n (z, z′)

(1)
=

∫
A

g (z′) dγ̄n (z, z′) =
γn (A) + γn (B)

γn (A)

∫
A

g (z′) dγn (z, z′)

=
(

1 + o
(
n
−1
))[∫

A∪B
g (z′) dγn (z, z′)−

∫
B

g (z′) dγn (z, z′)

]
=
(

1 + o
(
n
−1
))[∫

A∪B
g (z′) dQn (z′)−

∫
B

g (z′) dγn (z, z′)

]
≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]−
∫
B

Ldγn (z, z′)

]

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]− Lγn (B)

]
(2)

≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]− Lε

n

]
.

Note that we have
(1)
= due to γ̄n (B) = 0 and

(2)

≥ due to γn (B) < ε
n . Therefore, we reach the

conclusion
sup

Q:W(Q,P4)<ε

EQ [gθ (z′)] = inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)] .

17



Published as a conference paper at ICLR 2022

Next, we apply primal-dual form in Blanchet & Murthy (2019) for the finite metric c̃nX to reach

sup
Wcn (Q,P4)<ε

EQ [gθ (z′)] = inf
λ≥0

{
λε+ EP4

[
sup
z′
{gθ (z′)− λcn (z′, z)}

]}
.

Finally, taking n→∞ and noting that cn ↗ c, we reach the conclusion.

B FURTHER EXPLANATION WHY OUR UDR CAN UTILIZE GLOBAL
INFORMATION AND THE ADVANTAGE OF SOFT-BALL

Algorithm 1 The pseudocode of our proposed method.
Input: training set D, number of iterations T , batch size N , adversary parameters {k, ε, η}
for t = 1 to T do

1. Sample mini-batch {xi, yi}Ni=1 ∼ D
2. Find adversarial examples {xai }Ni=1 using Eq. (18)

(a) Initialize randomly: x0
i = xi + noise where noise ∼ U(−ε, ε)

(b) for n = 1 to k do
i. xinteri = xni + ηsign (∇xgθ(xni , xi, yi))

ii. xn+1
i = xinteri − ηλ∇xĉ(xinteri , xi)

(c) Clip to valid range: xai = clip(xki , 0, 1)

3. Update parameter λ using Eq. (19)
4. Update model parameter θ using Eq. (20)

Output: model parameter θ

The advantage of our soft ball comes from the adaptive capability of λ, which is controlled by a
global effect regarding how far adversarial examples xai from benign examples xi. Let us revisit
Algorithm 1. In the step 2.(b).i, we update

xinteri = xni + ηsign (∇xgθ(xni , xi, yi))

with the aim to find xinteri that can maximize gθ(·, xi, yi) as in the standard versions.

Furthermore, in the step 2.(b).ii, we update

xn+1
i = xinteri − ηλ∇xĉ(xinteri , xi) = xinteri − ηλ

(
xinteri − xi

)
= (1− ηλ)xinteri + ηλxi, (29)

where we assume L2 cost c(x, x′) = 1
2‖x− x

′‖2 is used. It is evident that xn+1
i is an interpolation

point of xinteri and xi, hence xn+1
i is drawn back to xi wherein the drawn-back amount is proportional

to ηλ.

We now revisit the formula to update λ as Eq. (19)

λn = λ− ηλ

(
ε− 1

N

N∑
i=1

ĉX (xai , xi)

)
,

which indicates that λ is globally controlled. More specifically, if average distance from xai to xi (i.e.,
1
N

∑N
i=1 ĉX (xai , xi)) is less than ε (i.e., adversarial examples are globally close to benign examples),

λ is adapted decreasingly. Linking with the formula in Eq. (29), in this case, xn+1
i gets back to xi

less aggressively to maintain the distance between xai and xi. Otherwise, adversarial examples are
globally far from benign examples, λ is adapted increasingly. In this case, xn+1

i gets back to xi more
aggressively to reduce more the distance between xai and xi.
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C RELATED WORK

Adversarial Attacks. In this paper, we are interested in image classification tasks and focus on
the adversaries that add small perturbations to the pixels of an image to generate attacks based on
gradients, which are the most popular and effective. FGSM (Goodfellow et al., 2015) and PGD
(Madry et al., 2018) are the most representative gradient-based attacks and PGD is the most widely-
used one, due to its effectiveness and simplicity. Recently, there are several variants of PGD that
achieve improved performance, for example, Auto-Attack by ensembling PGD with other attacks
(Croce & Hein, 2020a) and the B&B method (Brendel et al., 2019) by attacking with decision-based
boundary initialized with PGD. Along with PGD, these attacks have been considered as benchmark
attacks for adversarial robustness.

Adversarial defenses. Among various kinds of defense approaches, Adversarial Training (AT),
originating in Goodfellow et al. (2015), has drawn the most research attention. Given its effectiveness
and efficiency, many variants of AT have been proposed with (1) different types of adversarial
examples (e.g., the worst-case examples as in Goodfellow et al. (2015) or most divergent examples as
in Zhang et al. (2019)), (2) different searching strategies (e.g., non-iterative FGSM and Rand FGSM
(Madry et al., 2018)), (3) additional regularizations (e.g., adding constraints in the latent space (Zhang
& Wang, 2019; Bui et al., 2020; 2021a; Hoang et al., 2020)), and (4) different model architectures
(e.g., activation function (Xie et al., 2020) or ensemble models (Pang et al., 2019; Bui et al., 2021b)).

Distributional robustness. There have been a few works attempting to connect DR with adversarial
machine learning or improve adversarial robustness based on the ideas of DR (Sinha et al., 2018;
Staib & Jegelka, 2017; Miyato et al., 2018; Zhang & Wang, 2019; Najafi et al., 2019; Levine &
Feizi, 2020; Le et al., 2022; Thanh et al., 2022). A recent work of Dong et al. (2020) proposes a
new AT algorithm by constructing a distribution over each data sample to model the adversarial
examples around it, which is still in the category of pointwise adversary (Sinha et al., 2018) and has
no relations to DR. Although its aim of enhancing adversarial robustness is visually related ours, its
mythology is different from ours. Therefore, we consider Sinha et al. (2018); Staib & Jegelka (2017)
as the most relevant ones to ours. Specifically, both works leverage the dual form of Wasserstein
DR (Blanchet & Murthy, 2019) for searching worst-case perturbations for AT, where Sinha et al.
(2018) (WRM) focuses on certified robustness with comprehensive study on the tradeoffs between
complexity, generality, guarantees, and speed, while Staib & Jegelka (2017) (FDRO) points out that
Wasserstein robust optimization can be viewed as the generalization to standard AT.

Although our study is inspired by the two works, there are significant differences and new results of
ours: 1) We introduce a new Wasserstein cost function and a new series of risk functions in WDR,
which facilitate our framework to generalize and encompass many SOTA AT methods. While WRM
can be viewed as the generalization to PGD-AT only. 2) Most importantly, although WDR has been
demonstrated to have superior properties over standard AT in the two papers, unfortunately, WRM
and FDRO have not been observed to outperform standard AT methods. For example, the experiments
of FDRO show that adversarial robustness on MNIST of WRM and FDRO is worse than that of AT
with PGD and iterative-FGSM (Staib & Jegelka, 2017). Moreover, WRM and FDRO’s effectiveness
either on more complex colored images (e.g., CIFAR10) or against more advanced attacks (e.g.,
Auto-Attack) has not been carefully studied yet. On the contrary, we conduct extensive experiments
to show the SOTA performance of our proposed algorithms.

D EXPERIMENTAL SETTINGS

For MNIST dataset. We use a standard CNN architecture for the MNIST dataset which is identical
with that in Carlini & Wagner (2017). We use the SGD optimizer with momentum 0.9, starting
learning rate 1e-2 and reduce the learning rate (×0.1) at epoch {55, 75, 90}. We train with 100
epochs.

For CIFAR10 and CIFAR100 dataset with ResNet18 architecture. We use the ResNet18 for
the CIFAR10 and CIFAR100 dataset. We use the SGD optimizer with momentum 0.9, weight decay
3.5e-3 as in the official implementation from Wang et al. (2019).4 The starting learning rate 1e-2 and
reduce the learning rate (×0.1) at epoch {75, 90, 100}. We train with 200 epochs.

4https://github.com/YisenWang/MART
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For hard/soft-ball projection experiments. For PGD-AT, we use the following three ad-
hoc strategies for ε: 1) Fixing ε = 8/255; 2) Fixing ε = 16/255; 3) Gradually increas-
ing/decreasing εfrom 8/255 to 16/255, from epoch 20 to epoch 70, with the changing rate
δ = 8/255/50 per epoch. For example, the perturbation bound of the increasing strategy at epoch
i is: εi = min( 16

255 ,max( 8
255 ,

8
255 + (i− 20)δ)); the perturbation bound for decreasing strategy is:

εi = max( 8
255 ,min( 16

255 ,
16
255 − (i− 20)δ)).

For CIFAR10 with WideResNet architecture. We follow the setting in Pang et al. (2020) for the
additional experiments on CIFAR10 with WideResNet-34-10 architecture. More specifically, we
train with 200 epochs with SGD optimizer with momentum 0.9, weight decay 5e-4. The learning rate
is 0.1 and reduce at epoch 100th and 150th with rate 0.1 (Rice et al., 2020; Wu et al., 2020). More
importantly, to match the performance as reported in Croce et al. (2020), we omit the cross-entropy
loss of the natural images in PGD-AT and UDR-PGD. More specifically, the objective function
of PGD-AT in Eq. (5) has been replaced by: infθ EP

[
β supx′∈Bε(x) CE (hθ (x′) , y)

]
while the

unified risk function for UDR-PGD to be: gθ (z′) := βCE (hθ (x′) , y′). We also switch Batch
Normalization layer to evaluation stage when crafting adversarial examples as adviced in Pang et al.
(2020).

E VISUALIZING THE BENEFIT OF DISTRIBUTIONAL ROBUSTNESS

Synthetic dataset setting. We conduct an experiment on a synthetic dataset with a simple MLP
model to visualize the benefit of our UDR framework over the standard AT methods, by taking UDR-
PGD and PGD-AT as examples. The synthetic dataset consists of three clusters A, B1, B2 where A,
B are two classes as shown in Figure 2c. The data points are sampled from normal distributions, i.e.,
A ∼ N ((−2, 0),Σ) , B1 ∼ N ((2, 0),Σ) and B2 ∼ N ((6, 0),Σ) where Σ = 0.5 ∗ I with I is the
identity matrix. There are total 10k training samples and 2k testing samples with densities of three
clusters are 10%, 50% and 40%, respectively. We use a simple model of 4 Fully-Connected (FC)
layers as follows: Input –> ReLU(FC(10)) –> ReLU(FC(10)) –> ReLU(FC(10)) –> Softmax(FC(2)),
where FC(k) represents for FC with k hidden units. We use Adam optimizer with learning rate 1e-3
and train with 30 epochs. We use {k = 20, ε = 1.0, η = 0.1} for adversarial training (either PGD-AT
or UDR-PGD) and PGD attack with {k = 200, ε = 2.0, η = 0.1} for evaluation.

It is a worth noting that while the distance between clusters is 2, we limit the perturbation ε = 1 for
the adversarial training to show the advantage on the flexibility of the soft-ball projection on the
same/limited perturbation budget. Intuitively, cluster A has the lowest density (10%), therefore, the
ideal decision boundary should be surrounded cluster A which sacrifices the robustness of the cluster
A but increases the overall robustness eventually.

Comparison between UDR-PGD and PGD-AT. First, we visualize the trajectory of adversarial
example from PGD and our UDR-PGD as in Figures 2b,2a to compare behaviors of two adversaries
on the same pre-trained model. It can be seen that: (i) the PGD’s adversarial examples and ours are
pushed toward the lower confident region to maximize the prediction loss gθ(x′, x, y); (ii) however,
while the adversarial examples of PGD are limited on the hard-projection ball, our adversarial
examples have more flexibility. Specifically, those are close to the decision boundary (cluster A, B1)
can go further, while those are distant to the decision boundary (cluster B2) stay close to the original
input. This flexibility helps the adversarial examples reach better local optimum of the prediction
loss, hence, benefits the adversarial training. Consequently, as shown in Figure 2c the final decision
boundary of our UDR-PGD is closer to the ideal decision boundary than that of PGD-AT, hence,
achieving a better robustness. Quantitative result shows that the robust accuracy of our UDR-PGD is
82.6%, while that of PGD-AT is 74.5% with the same PGD attack {k = 200, ε = 2.0, η = 0.1}.

Comparison among UDR-PGD settings. Here we would like to provide more understanding
about our framework through the experiment with PGD-AT as shown in Figure 3. First, we compare
the trajectories of the adversarial examples of UDR-PGD with different λ as shown in Figures 3a,3b.
It can be seen that the crafted adversarial examples stay closer to their benign counterparts when λ
becomes higher (i.e., λ = 0.1 in Figure 3a). In contrast, the soft-projection ball is extended when λ
becomes smaller (i.e., λ = 0.01 in Figure 3b). On the other hand, with the same λ but smaller τas
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(a) UDR-PGD (b) PGD (c) Decision Boundary

Figure 2: (a)/(b): Trajectory of PGD and UDR-PGD adversarial examples. Each trajectory includes
20 intermediate steps. For better visualization, we do not use random initialization. The model is the
natural training at epoch 1. (c) The final decision boundary comparison.

shown in Figure 3c, the soft-ball projection is more identical to the hard ball projection as shown in
Figure 2b. These behaviors concur with the theoretical expectation as discussed in Section 4.1 in the
main paper.

Figure 3d shows the learning progress of parameter λ. It can be observed that (i) the λ converges to 0
regardless of its initialization value and (ii) the convergence rate of λ depends on the parameter τ (i.e.,
smaller τ slower convergence). We choose τ = 2η for the experiments on real-world image datasets.

(a) λ = 0.1, τ = 1.0 (b) λ = 0.01, τ = 1.0 (c) λ = 0.01, τ = 0.01 (d) Changing of λ

Figure 3: (a)/(b)/(c): Trajectory of UDR-PGD adversarial examples with different settings. Each
trajectory includes 20 intermediate steps. For better visualization, we do not use random initialization.
The model is the natural training at epoch 1. (d) The changing of parameter λ.

Further results of soft-ball projection. In Figure 4, we compare our UDR-PGD with the soft-ball
projection to PGD-AT with the hard-ball projection with different settings against the PGD attack on
CIFAR10. For PGD-AT, we use the following three ad-hoc strategies for ε: 1) Fixing ε = 8/255; 2)
Fixing ε = 16/255; 3) Gradually increasing/decreasing ε from 8/255 to 16/255 (Refer to Appendix
D for details). It can be seen that it is hard to find an effective strategy of the perturbation boundary
of the hard-ball projection for PGD-AT, which can outperform ours. This demonstrates the benefit of
our soft-project operation.

F MORE RESULTS AND ANALYSIS

Further results with C&W (L2) attack. We enrich the comprehensiveness of the experiments by
further evaluating the defense methods with C&W (L2) attack (Carlini & Wagner, 2017) which is a
very strong optimization based attack. The experiment has been conducted on the CIFAR10 dataset
with WideResNet architecture. The hyper-parameters are c ∈ {0.5, 0.7, 1.0}, kappa = 0, steps =
1000, lr = 0.01 where kappa is the confidence coefficient and c is box-constraint coefficient.5 As
shown in Table 7, our distributional robustness version significantly outperform the standard ones
in term of robust accuracy. For example, against C&W (c=0.5) attack, the robust accuracy gap
between UDR-PGD and PGD-AT is 6% while that for UDR-AWP-AT and AWP-AT is around 5%.
The average improvement of robust accuracies against different levels of attack strengths is around

5We use the implementation from https://github.com/Harry24k/adversarial-attacks-pytorch
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Figure 4: Hard/soft-ball projections

Table 7: Robustness evaluation against C&W attack with WRN-34-10 on the full test set of the
CIFAR10 dataset (10K test images). c is box-constraint coefficient. (*) Omit the cross-entropy loss
of natural images.

Nat c = 0.5 c = 0.7 c = 1.0 Avg-Gap
PGD-AT* 84.93 40.85 25.90 12.95 -
UDR-PGD* 84.60 47.31 31.58 16.57 5.25
TRADES 85.70 47.65 34.30 21.03 -
UDR-TRADES 84.93 49.14 36.33 23.28 1.92
AWP-AT 85.57 49.91 34.31 18.97 -
UDR-AWP-AT 85.51 54.44 39.86 23.61 4.91

5%. This result strongly emphasizes the contribution of our distributional robustness and the soft-ball
projection over the standard adversarial training.

Experimental results of WRM (Sinha et al., 2018). The performance of WRM highly depends
on the Lagrange dual parameter γ (or ε = 0.5/γ in their implementation6), which controls the
robustness level. As mentioned in their paper, with large γ, the method is less robust but more
tractable. Generally, decreasing γ will reduce the natural accuracy but increase the robustness of the
model as shown in Table 8. We obtained the best performance on MNIST with γ = 0.05 (CNN),
while on CIFAR10 and CIFAR100 with γ = 0.5 (ResNet18). The best results with three benchmark
datasets have been reported as in Table 9 (recall results from Table 1). It is a worth mentioning that
while we could obtain a similar performance as reported Sinha et al. (2017) on the MNIST dataset
with their architecture (3 Convolution layers + 1 FC layer), however, WRM seems much less effective
with larger architectures.

Table 8: Result of WRM with different ε = 0.5/γ on the CIFAR10 dataset.

Nat PGD AA B&B
ε = 0.1 90.9 15.3 13.7 15.8
ε = 0.5 86.7 33.9 32.6 35.4
ε = 1.0 83.7 40.9 39.8 41.4
ε = 2.0 79.4 45.4 43.6 45.5
ε = 5.0 71.6 47.5 45.2 46.2
ε = 10.0 65.0 46.6 43.4 44.4

6https://github.com/duchi-lab/certifiable-distributional-robustness/blob/master/attacks_tf.py
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Table 9: Comparisons of natural classification accuracy (Nat) and adversarial accuracies against
different attacks. Recall results from Table 1 with additional results of WRM. Best scores are
highlighted in boldface.

MNIST CIFAR10 CIFAR100

Nat PGD AA B&B Nat PGD AA B&B Nat PGD AA B&B
WRM 91.8 27.1 4.5 8.2 83.7 40.9 39.8 41.4 56.6 24.7 21.3 22.9

PGD-AT 99.4 94.0 88.9 91.3 86.4 46.0 42.5 44.2 72.4 41.7 39.3 39.6
UDR-PGD 99.5 94.3 90.0 91.4 86.4 48.9 44.8 46.0 73.5 45.1 41.9 42.3

Further results of whitebox attacks with varied ε. Here we would like to provide more results on
defending against whitebox attacks with a bigger range of ε as shown in Figure 5. It can be seen that
in a wide range of attack strengths our DR methods consistently outperform their AT counterparts.

(a) MNIST (b) CIFAR10 (c) CIFAR100

Figure 5: Robustness evaluation against multiple attack strengths.

The convergence of the algorithm. During the training, we observed that while adversarial exam-
ples distribute inside/outside the hard ball ε differently (i.e., as shown in Figure 2a ), but generally the
average distance to original input is less than ε. Therefore, according to the update formulation in
Eq. (19), λ tends to decrease to 0 and eventually is stable at 0 because of very small learning rate
as shown in Figure 3d. In addition, we visualize the training progress as shown in Figure 6 to show
the convergence of our method. It can be seen that, the error-rate reduces over training progress and
converges at the end of the training progress.

(a) MNIST (b) CIFAR10 (c) CIFAR100

Figure 6: Training progress of our UDR-PGD on different datasets, evaluating on the full training set
(e.g., 50k images) and the full testing set (e.g., 10k images). Robust accuracy is against PGD attack
with k = 20.

Further experiment result on CIFAR100. We would like to provide additional experiment result
on CIFAR100 dataset such that all defenses are adversarially trained with ε = 8

255 . Our UDR-PGD
outperforms PGD 3.7% at ε = 8

255 and 2.3% on average, while our UDR-TRADES and UDR-MART
outperform their counterparts by around 0.5% and 0.7%, respectively. It is worth noting that, in our
experiment, MART is quite sensitive with changes of (MART’s natural accuracy drops to a lower
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Table 10: Robustness evaluation on CIFAR100 dataset. The last column “Avg” represents the average
gap of robust accuracy between our methods and their standard AT counterparts.

Nat 8
255

10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT 63.7 22.8 16.1 11.4 7.8 5.1 2.4 -
UDR-PGD 64.5 26.5 18.9 13.7 9.8 7.0 3.5 2.30
TRADES 60.2 30.3 24.5 18.8 14.8 11.5 6.7 -
UDR-TRADES 60.1 30.8 25.1 19.3 15.5 12.2 7.5 0.52
MART 54.1 32.0 26.8 21.9 17.4 13.8 7.6 -
UDR-MART 54.4 32.3 27.4 22.5 18.4 14.4 8.5 0.67

Table 11: Distance function and its gradient

cX (x, x′) ∇x′c(x, x′)
L1

∑d
i=1

∥∥∥xi − x′i∥∥∥ 1, ∀i ∈ [1, d]

L2
1
2

∑d
i=1 (xi − x′i)

2 ∑d
i=1(x′i − xi)

L∞ maxi

∥∥∥xi − x′i∥∥∥
{

1, i = argmaxi
∥∥∥xi − x′i∥∥∥

0, otherwise

performance than that of TRADES); that might explain the lower gap between UDR-MART and
MART with the new ε.

G CHOOSING THE COST FUNCTION

In this section, we provide the technical details of our learning algorithm in Section 4 in the main
paper, especially, the important of choosing cost function ĉ(x, x′). Given the current model θ and the
parameter λ, we find the adversarial examples by solving:

xa = argmaxx′ {gθ(x′, x, y)− λĉX (x′, x)}

We employ multiple gradient ascent update steps without projecting onto the hard ballBε. Specifically,
the updated adversarial at step t+ 1 as follows:

xt+1 = xt + η (∇x′gθ(x′, x, y)− λ∇x′ ĉX (x′, x))

Given the smoothed cost function as in Equation (19), the updating step is as follows:

xt+1 =

{
xt + η (∇x′gθ(x′, x, y)− λ∇x′cX (x′, x)) , if cX (x′, x) < ε

xt + η
(
∇x′gθ(x′, x, y)− λ

τ ∇x′cX (x′, x)
)
, otherwise.

It shows that, the pixels that are out-of-perturbation ball Bε will be traced back with a longer step,
depending on the parameter τ . We consider three popular distance functions of cX (x′, x) with their
gradient as Table 11. It is worth noting that, while the norm L1, L2 have gradient in all pixels, the
L∞ has gradient in only one pixel per image. It means that, when using L∞ norm as the cost function
cX (x, x′), only single pixel has been traced back at each iteration. In contrast, using L2 will project
all pixels toward the original input x with the step size of each. As in the discussion in Section F,
only small part of an MNIST image contributes to the prediction, while in contrast, most of pixels of
a CIFAR10 image affect to the prediction. Based on this observation, we use the L∞ for the MNIST
dataset and L2 for the CIFAR10 dataset in the updating step. However, the perturbation strength ε
has been measured in L∞, therefore, we still use L∞ in the Equation (22) to update λ.

We also visualize the histogram of gradient ∇x′gθ(x′, x, y) and ∇x′ ĉX (x′, x) as shown in Figure
7. It can be seen that the strength of gradient grad1 = ∇x′gθ(x′, x, y) is much smaller than
grad2 = ∇x′ ĉX (x′, x), for example, on the MNIST dataset, grad1 ∈ [−5× 10−4, 5× 10−4] while
grad2 ∈ [−0.3, 0.3] which is 600 times larger. Therefore, if using single update step, the gradient
∇x′ ĉX (x′, x) dominates the other and pulls the adversarial examples close to the natural input.
These adversarial examples are weaker and do not helps to improve the robustness. Alternatively,
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we break single update step for solving Equation (21) to two sub-steps as shown in Algorithm 1 to
balance between push/pull steps. It also can be seen that the grad2 corresponds with the perturbation
boundary ε and the step size η. For example, on the MNIST dataset, grad2 has the range from
[−0.3, 0.3] and has the highest density around [−0.01, 0.01] where {0.3, 0.01} are the perturbation
boundary and step size in the experiment.

(a) CIFAR10, grad1 (b) MNIST, grad2 (c) CIFAR10, grad1 (d) CIFAR10, grad2

Figure 7: Histogram of gradient strength of grad1 = ∇x′gθ(x′, x, y) and grad2 = ∇x′ ĉX (x′, x)
on MNIST and CIFAR10 dataset. We use L2 norm for the cost function cX (x′, x) , τ = η and λ = 1
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