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Abstract

Recently, autoregressive neural vocoders have provided remark-
able performance in generating high-fidelity speech and have
been able to produce synthetic speech in real-time. How-
ever, autoregressive neural vocoders such as WaveFlow are ca-
pable of modeling waveform signals from mel-spectrogram,
its number of parameters is significant to deploy on edge de-
vices. Though NanoFlow, which has a small number of pa-
rameters, is a state-of-the-art autoregressive neural vocoder, the
performance of NanoFlow is marginally lower than WaveFlow.
Therefore, we propose a new type of autoregressive neural
vocoder called FlowVocoder, which has a small memory foot-
print and is capable of generating high-fidelity audio in real-
time. Our proposed model improves the density estimation of
flow blocks by utilizing a mixture of Cumulative Distribution
Functions (CDF) for bipartite transformation. Hence, the pro-
posed model is capable of modeling waveform signals, while its
memory footprint is much smaller than WaveFlow. As shown
in experiments, FlowVocoder achieves competitive results with
baseline methods in terms of both subjective and objective eval-
uation, also, it is more suitable for real-time text-to-speech ap-
plications.
Index Terms: neural vocoders, text-to-speech, speech synthe-
sis, normalizing flow.

1. Introduction
Speech synthesis has numerous practical applications in en-
hancing user experiences such as reading online newspapers
and voice assistants. Technically, there are two main stages
to produce synthetic speech: generating acoustic features and
transforming acoustic features to waveform signals. The sec-
ond stage usually refers to the vocoder stage. Traditional
vocoder approaches generate audio samples using either the
spectral density model [1] or the basis of the source-filter
model [2]. However, the fidelity of generated speech from those
approaches is low and sounds like a robotic voice. Therefore, in
recent years, a lot of studies in neural vocoders have provided
remarkable performance in producing speech signals from Mel-
spectrogram. They are classified into two categories: autore-
gressive and non-autoregressive vocoders. Regarding high-
fidelity, autoregressive vocoders outperform non-autoregressive
vocoders. On the contrary, the latter run much faster and are
used in real world applications.

For non-autoregressive vocoders, the Generative Adversar-
ial Network (GANs)-based method is the most successful neural
vocoders that provide high-fidelity speech [3, 4, 5, 6, 7, 8, 9, 10].
Although GANs-based vocoders are able to generate synthetic
speech in real-time and have a small memory footprint, they are
still fragile to train due to adversarial training. To overcome this

training issue, MelGAN [3] and HiFi-GAN [4] utilize an aux-
iliary loss called features matching between real and generated
data to facilitate adversarial training. Moreover, only relying
on adversarial loss causes degradation of audio quality, so the
mean square error of Mel-spectrogram [4] opts to deal with the
degradation of synthetic speech. While Multiband MelGAN [8]
replaces the naive features matching with the multi-resolution
STFT to better estimate the discrepancy between ground-truth
and generated speech. Instead of using auxiliary loss, GAN-
TTS [6] uses an ensemble of discriminators to take the linguistic
features into account and stabilize the training process.

Another vein of research on non-autoregressive vocoders is
to leverage normalizing flow models in order to model wave-
form signals directly from either acoustic features like Mel-
spectrogram [11] or linguistic features [12]. Both Parallel
Wavenet [13] and Clarinet [12] are inverse autoregressive flow
models, thus, at inference time they are able to synthesize au-
dio in parallel. Those models are trained in the teacher-student
procedure from a well trained Wavenet [14] to benefit from au-
toregressive models and achieve real-time inference. Neverthe-
less, they require a well trained Wavenet teacher and a set of
auxiliary losses to acquire high fidelity synthesis, thus, they
are complicated in training and development. Consequently,
flow-based vocoders generally perform worse than autoregres-
sive vocoders with regard to modeling density of audio signal,
therefore, their performance is so far behind compared with au-
toregressive vocoders.

The second line of research on neural vocoders is autore-
gressive vocoders [15, 16, 17, 18] which acquire closet perfor-
mance compared with ground-truth audio. Despite autoregres-
sive vocoders being capable of modeling the density of audio
signals to generate realistic audio, they are immensely slow at
inference due to sequential generating. To achieve real-time in-
ference, the authors in [16] proposed WaveFlow as a general
case for both the Wavenet and the WaveGlow model, Wave-
Flow is able to trade-off between optimizing the likelihood
and inference time to synthesize high-quality audio conditioned
on Mel-spectrograms. An improved version of Waveflow is
Nanoflow [15] which operates a sharing density estimator and
flow indication embedding to reduce the model’s memory foot-
print.

In this paper, we propose a new autoregressive normalizing
flow vocoder called FlowVocoder, which is developed based on
sharing a density estimator block [15]. Our proposed method
has a small memory footprint by sharing a density estimator
across flow blocks, and we also enhance the density estimation
of flow blocks by using a more flexible transformation func-
tion. Also, as described in [19], we adopt a new condition-
ing architecture that is responsible for computing parameters
for transformation functions. According to empirical experi-
ments, we modify the conditioning block by removing attention
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layers since those layers not only do not improve the flexibil-
ity of flow blocks but also require more parameters. Conse-
quently, FlowVocoder is able to generate synthetic audio which
acquired competitive results in terms of both objective and sub-
jective evaluation compared with baseline vocoders.

2. FlowVocoder
FlowVocoder is an autoregressive normalizing flow model that
enables to generate waveform signals by sampling from a nor-
mal Gaussian distribution conditioned on a Mel-spectrogram.
This work relies on [16] that demonstrated an incredible perfor-
mance of speech synthesis with a very small number of neural
network’s parameters. In our model, there are two types of map-
ping: forward mapping and reverse mapping. The reverse map-
ping f−1(x) is utilized to model the distribution of input data
p(x) through a sequence of reverse transformation functions in
a simple distribution p(z), while the forward mapping is utilized
to generate back an input data x = f(z) from a sampling z ∼
p(z). Particularly, in the reserve mapping, the output z is calcu-
lated from the input x by going through a sequence of inverse
flow layers which correspond to a sequence of coupling trans-
formation functions as z = f−1

k (f−1
k−1(...(f

−1
0 (x)))), where

f−1
0 (x) = x. Each transformation function is expressed by a

mixture of the logarithm of cumulative distribution functions:

f−1
k (xk−1) = σ−1(MixLogCDF(xk−1;πk, µk, sk)).e

ak + bk
(1)

MixLogCDF(xk−1;πk, µk, sk) =

M∑
i=1

πi
kσ((xk−1−

µi
k).e

−sik )

, where k denotes the k−th reverse transformation function. M
is the number of logistic mixture components of the cumulative
function, while i stands for the i − th component in the lo-
gistic mixture function. σ−1 denotes inverse sigmoid function.
The transformation parameters ak, bk, πk, µk, sk of the reverse
function f−1

k (xk−1) are computed based on the output of the
previous function f−1

k−1(xk−2) = xk−1 = (x1,k−1, x2,k−1),
where x0 is input data. We use a simple block neural network
g(x1,k−1; θ) which outputs five parameters ak, bk, πk, µk, sk
for computing transformation parameters, where g(x1,k−1; θ)
is a stack of multiple CNN layers and θ is its parameters. The
output xk = (x1,k, x2,k) is defined as follows:

x1,k = x1,k−1 (2)

x2,k =σ−1(MixLogCDF(x2,k−1;πk, µk, sk)
)
.eak + bk (3)

The above coupling transformation is more expressive than
the classic coupling affine transformation, therefore, it is able
to increase the flexibility of flow models to capture data density
distribution. Moreover, the mixture logistic CDF always has the
reversed function due to its monotonic increase property. Also,
the Jacobian determinant of this transformation is straightfor-
ward to calculate since it is the sum of the probability density
function, the derivative of the inverse sigmoid function, and the
scale of transformation a. The logarithm of Jacobian determi-
nant, denoted as log |det(J())|, of the mixture logistic CDF is
computed as follow:

log |det(J(f−1(x)))| = log |a|+ log

∣∣∣∣∣ 1

δ.(1− δ)

∣∣∣∣∣
+ log

∣∣∣∣∣dσ−1(τ)

dτ

∣∣∣∣∣
(4)

where

δ = MixLogPDF(x;π, µ, s)
= z − log(s)− 2. log(1 + ez)

where z = (x− µ).e−s

(5)

τ = MixLogCDF(x;π, µ, s) (6)

Since our model is the autoregressive model, we reshape
the 1-dimensional input data x to the 2-dimensional data by
splitting x into H groups as {X1, ..., XH}, and then they are
stacked to form a 2-D matrix X ∈ Rh×w. To transform from
the data distribution to the isotropic Gaussian distribution, a se-
quence of bipartite transformations represented by mixture lo-
gistic CDFs are performed recursively to model a conditional
dependency between the grouped data

Zi = f−1(X<i, Xi; a, b, π, µ, s),where i = 1, ..., H (7)

. X<i denotes for X1, ..., Xi−1. The inverse image of X ∈
Rh×w on isotropic Gaussian distribution, Z ∈ Rh×w, is
achieved by sequentially performing inverse mapping f−1 :
X 7→ Z over rows of input data. For sampling, a sample
Z ∈ Rh×w is firstly sampled from the isotropic Gaussian, and
then it is transformed to the data distribution by autoregressively
performing the forward mapping function f : Z 7→ X over
rows of the sampled noise

Xi = f(X<i, Zi; a, b, π, µ, s),where i = 1, ..., H (8)

For each iteration of training, we directly maximize log-
likelihood of the data which poses no difficulty to compute by
applying the change of variables:

logP (X) =
∑
i

(
log |det(J(f−1(X<i)))|

− Z2
i

2
− log 2π

2

) (9)

2.1. Shared density estimator

In [15], the authors proposed a new model called NanoFlow to
reduce the computational and parameter footprint of flow mod-
els. As shown in Figure. 1, we utilize the same strategy to
reduce computation and model size based on sharing a neural
density estimator across K flow blocks. Also, a flow indication
embedding is used to enable the shared density estimator to be
capable of learning multiple contexts for a specific flow block.
Consequently, a bipartite transformation block is redefined as:

Zi = f−1(g(X<i, Xi; θ̂, ek); a, b, π, µ, s) (10)

, where g(X<i, Xi; θ̂) is the shared density estimator which is
utilized for K flow blocks. Embedding vector ek ∈ RD repre-
sents the k−th flow block, this embedding is fed into the shared
density estimator to output proper transformation’s parameters.
Intuitively, the flow layer embedding ek as an additional context



Shared Density
Estimator

Flow Layer
Embedding

MixtureLogCDF

Transformation


X

Z

a 
b

s

K Flow
 Blocks

Waveform
Signal

Figure 1: The FlowVocoder architecture with shared density es-
timator block
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Figure 2: The comparison regarding log likelihood on testing
set between FlowVocoder and FlowVocoder with attention layer

is able to guide the shared density estimator learning multiple
densities with a minimal number of additional parameters.

As shown in Figure. 2, we experimented to compare per-
formance between FlowVocoder using only convolutional lay-
ers and FlowVocoder using attention layers as suggested in [19].
Both models have the same number of residual channels which
is 128 channels, and they are trained for 500k iterations. The
performances of the two models are estimated on the testing
set. It is clear to see that at the beginning of the training pro-
cess, FlowVocoder with attention surpasses FlowVocoder with-
out attention. However, after enough training, the gap between
the two models is insignificant. As a result, flow blocks without
attention layers are well-suited for our proposed model. Espe-
cially, in the case of deploying on edge devices. Indeed, atten-
tion layers require O(n2.d) computation complexity per layer,
therefore, it consumes tremendously computational resources to
feed forward. Consequently, the neural block is used to output
transformation parameters is: Conv1×1 −→ GatedConv3×3 −→
Conv1×1

2.2. Speech synthesis conditioned on Mel-spectrogram

After training the FlowVocoder, generating waveform signals
conditioned a Mel-spectrogram is straightforward by first sam-
pling a Gaussian noise z. Subsequently, since the size of con-
ditioning Mel-spectrograms is mismatched with the sampled
noise, we upsample the conditioned Mel-spectrogram to match

the size of the noise sample z. It is then added as a bias term
at each flow block. For mapping a Gaussian noise z forward to
waveform signals, the sampled noise is applied to the forward
mapping

Xi = MixLogInvCDF
(
σ((Z<i − b).e−a)

)
(11)

, where MixLogInvCDF is approximated iteratively by using
numerical method.

3. Experiment
We trained and evaluated our proposed model and baseline
models on the LJSpeech dataset [20]. This dataset contains
13,100 audio clips from a single female speaker, the speech
data is approximately 24 hours with a sampling rate of 22.05
kHz. The dataset is split into two parts: 90% of data for training
and 10% of data for testing. For each utterance, we randomly
draw a chunk of 16,000 samples, the chunk of audio is then
normalized in the range from 0 to 1 by dividing the maximum
waveform value v = 32768.0. Next, 80 band log-scale Mel-
spectrograms are extracted from the normalized chunk using
FFT of size 1024, hop length of size 256, window of size 1024,
and Hamming window. To use Mel-spectrograms as a condi-
tioner for speech synthesis, we upsample Mel-spectrogram 256
times by operating two 2D-transpose CNN layers with filter size
of k = [32, 3].

Our model and baseline models are trained on 2 Nvidia
V100 GPUs with a batch size of 2 for 1M iterations. We use
Adam optimizer with initial learning rate of 2 × 10−4, and we
anneal the learning rate by half for every 200k iterations. The
dimension of flow layer embedding is D = 512 for ek ∈ RD

in the eight-flows block model, and we use H = 16 to squeeze
input audio into 2-D matrix X ∈ Rh×w. Our source code and
audio samples can be found in our github1

3.1. Objective evaluation

Figure 3: F0 contour of utterance ”in being comparatively mod-
ern” of FlowVocoder and WaveFlow

For objective evaluation, we draw randomly 100 utterances
from the testing dataset to calculate objective metrics. Next,
we acquire the performance of synthetic speech with regard
to three metrics: Mel-ceptral distortion (MCD) [21], log like-
lihood (LL), and root mean square error of fundamental fre-
quency (RMSEF0) [22]. Equations for MCD and RMSEF0

calculation are defined as follows:

MCD[dB] =
10

log 10

√√√√2

M∑
m=1

(cr(m)− cs(m))2 (12)

RMSEF0[cent] = 1200
√

(log2 (Fr)− log2 (Fs))2 (13)

1https://v-manhlt3.github.io/FlowVocoder-demo-pages/



Table 1: The objective evaluation is compared among FlowVocoder and baseline models. The objective metrics are used including
the number of model’s parameters in million, the mel-ceptral distortion(MCD), the root mean square error of fundamental frequency
(RMSEF0), and the log likelihood (LL).

Method Res channels Parameters(M)↓ MCD↓ RMSEF0 ↓ LL↑
WaveFlow (H=16) 128 22.25 5.61± 0.031 30.33± 0.78 5.001
NanoFlow (H=16) 128 2.85 5.54± 0.047 38.14± 0.65 4.970
Proposed (H=16) 128 4.14 5.37±0.043 28.25 ±0.88 5.011

, where cr and cs denote Mel-spectrum of groundtruth and syn-
thetic waveform signals, respectively. M denotes the order
of Mel-spectrum, Fr and Fs denote aperiodic components of
groundtruth and synthetic signal.

Table. 1 shows comparisons between baseline systems and
the proposed system regarding objective metrics. NanoFlow is
the smallest one regarding the size of models, and the size of
our proposed is bigger than NanoFlow by one and a half of
the number of parameters. However, the proposed model out-
performs Nanoflow in terms of MCD and log likelihood. Es-
pecially, FlowVocoder achieves the least Mel-ceptral distance
with ground-truth audio, thereby, FlowVocoder is able to pro-
duce synthetic speech which has the highest audio quality com-
pared to ones generated by other baselines. In comparision
with WaveFlow, our model is much smaller than WaveFlow,
about five times smaller in terms of model’s size; furthermore,
FlowVocoder surpasses WaveFlow with regard to MCD, log
likelihood, and RMSEF0. As shown in Figure. 3, FlowVocoder
matches F0 contour of ground-truth better than WaveFlow,
therefore, the generated speech from FlowVocoder is more nat-
ural than the generated speech from WaveFlow. This result is
also reflected in the subjective evaluation. Finally, we com-
puted the real-time factor(RTF) at the inference step in a sin-
gle V100 GPU shown in Table. 2. Although FlowVocoder
takes the longest time to synthesize a second of speech, it is
still able to generate speech in real-time. The explanation for
that phenomenon is due to the burden of approximation of
MixLogInvCDF function in Eq. (11).

Table 2: The real-time factor(RTF) on a single GPU at the in-
ference step among FlowVocoder and baseline models.

Method RTF↓
WaveFlow 0.165
NanoFlow 0.130
Proposed 0.514

3.2. Subjective evaluation

For subjective evaluation, we acquired an evaluation of the pro-
posed model and baseline models in terms of naturalness using
5 scales mean opinion scores (MOS), in which 15 participants
are asked to assess the quality of synthetic audio. Each partic-
ipant wears the same headphone when doing the experiment.
They are asked to listen to 20 audio clips from each system,
then assess for the naturalness of audio on a scale of 1 to 5
with a 1.0 point increments. Since all systems are capable of
synthesizing high perceptual audio, we conducted this experi-
ment by asking all participants to listen to the synthetic speech
twice. They then give two opinion scores, subsequently, we av-
erage these scores to achieve one evaluation sample. Totally, we
collected approximately 1,500 evaluation samples, the results
of this experiment are represented in the first part of Table. 3.
All reported MOS have statistical significance with p < 0.05.

Our proposed model surpasses both WaveFlow and NanoFlow
in terms of high fidelity of audio generating from ground-truth
mel-spectrogram. That subjective result points out that the den-
sity estimation performance of FlowVocoder is superior with
both baselines.

Table 3: Subjective evaluation regarding MOS with 95% con-
fidence interval on 20 random utterances from testing dataset.
We use the T-test method to examine the statistical significance
of all reported MOS with p < 0.05.

Method MOS↑ 95%CI
Mel-spectrogram + WaveFlow 4.38 ± 0.11
Mel-spectrogram + NanoFlow 4.18 ± 0.12
Mel-spectrogram + Proposed 4.41 ± 0.09

Tacotron2 + WaveFlow 4.26 ± 0.11
Tacotron2 + NanoFlow 4.07 ± 0.13
Tacotron2 + Proposed 4.30 ± 0.09

ground-truth 4.62 ± 0.08

We also test the quality of synthetic audio combined with
Tacotron2 [23]. The code and pretrained Tacotron 2 model
are from the authors github2.We test all systems on 20 ran-
dom utterances from the testing dataset, we first generate Mel-
spectrograms using Tacotron 2 and then vocoding these spec-
trograms by operating baseline vocoders and FlowVocoder. The
second part of Table. 3 reports text to speech experimental re-
sults. Regarding FlowVocoder, it acquires competitive perfor-
mance with NanoFlow and WaveFlow. According to the re-
sults, it shows that FlowVocoder is more well-suited for text-to-
speech applications.

4. Conclusions
In this work, we present a new sort of flow model called
FlowVocoder which is capable of modeling audio waveform
signals conditioning on Mel-spectrogram. Our proposed model
has a small memory footprint, corresponding with fewer
model’s parameters, by sharing a density estimator across K
flow blocks. Moreover, we enhance the flexibility of the bi-
partite transformation function by using a mixture of CDF. Fi-
nally, We modify the conditioning block to calculate transfor-
mation parameters efficiently for neural vocoders, particularly,
we remove attention layers to be more suitable for deploying on
edge devices. As shown in the experiments, FlowVocoder out-
performs both WaveFlow and NanoFlow regarding subjective
and objective evaluation. Especially, our model matches the F0
contour better compared with WaveFlow, therefore, the prosody
of generated audio is more natural. Though FlowVocoder ac-
quired impressive results, its inference time should be taken
into account. In the future, we could solve the high-latency
at inference step by speeding up the approximation of the
MixLogInvCDF function.

2https://github.com/NVIDIA/tacotron2
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