
Geodesic-Former: a Geodesic-Guided Few-shot
3D Point Cloud Instance Segmenter

Tuan Ngo and Khoi Nguyen

VinAI Research

Abstract. This paper introduces a new problem in 3D point cloud:
few-shot instance segmentation. Given a few annotated point clouds ex-
emplified a target class, our goal is to segment all instances of this target
class in a query point cloud. This problem has a wide range of prac-
tical applications where point-wise instance segmentation annotation is
prohibitively expensive to collect. To address this problem, we present
Geodesic-Former – the first geodesic-guided transformer for 3D point
cloud instance segmentation. The key idea is to leverage the geodesic
distance to tackle the density imbalance of LiDAR 3D point clouds. The
LiDAR 3D point clouds are dense near the object surface and sparse
or empty elsewhere making the Euclidean distance less effective to dis-
tinguish different objects. The geodesic distance, on the other hand, is
more suitable since it encodes the scene’s geometry which can be used
as a guiding signal for the attention mechanism in a transformer decoder
to generate kernels representing distinct features of instances. These ker-
nels are then used in a dynamic convolution to obtain the final instance
masks. To evaluate Geodesic-Former on the new task, we propose new
splits of the two common 3D point cloud instance segmentation datasets:
ScannetV2 and S3DIS. Geodesic-Former consistently outperforms strong
baselines adapted from state-of-the-art 3D point cloud instance segmen-
tation approaches with a significant margin. The code is available at
https://github.com/VinAIResearch/GeoFormer.

Keywords: Few-shot Learning, 3D Point Cloud Instance Segmentation

1 Introduction

This paper introduces a new problem of few-shot 3D point cloud instance seg-
mentation (3DFSIS). As Fig. 1 shows, given a few support point clouds (a.k.a.
scenes) with their ground-truth masks to define a target class, we aim to seg-
ment all instances of the target class in a query scene. Compared to related
vision tasks such as 3D point cloud instance segmentation (3DIS) and 3D point
cloud few-shot semantic segmentation (3DF3S), 3DFSIS is fundamentally dif-
ferent. For 3DIS, the training and test classes are the same. One could reliably
learn an instance segmenter with abundant annotated examples in training, then
apply that segmenter to the test scenes. That is not the case in 3DFSIS where
training and test classes are disjoint. For 3DF3S, we need to predict each point

ar
X

iv
:2

20
7.

10
85

9v
2

 [
cs

.C
V

]
 6

 A
ug

 2
02

2

https://github.com/VinAIResearch/GeoFormer

2 T. Ngo and K. Nguyen

Cluster

Cosine
Similarity

Query scene

Support sceneSupport mask

Mask Head

Backbone
Backbone

Kernels
Generation

Filter

Support
feature vector

Predicted query masks

Dynamic
Convolution

Masked Avg.
Pooling

DyCo3D

Fig. 1. Our baseline adapted on DyCo3D [16] for 3DFSIS. The query and support point
clouds are first input to a shared backbone to extract their features. Then the query
points are grouped into candidates based on their semantic and predicted object cen-
troids while the support points are masked-average-pooled to obtain a support feature
vector. The cosine similarity between the support feature vector and every candidate’s
average feature is used to filter out irrelevant candidates. The final candidates are used
to generate kernels for dynamic convolution with the feature produced by the mask
head in order to obtain the final instance masks of the query scene.

with a semantic label instead of an instance label as in 3DFSIS. That is, we
do not need to distinguish different instances of the same class as in 3DF3S.
Furthermore, unlike weakly/semi-supervised learning in 3DIS, where all classes
are known in training, in the training of 3DFSIS, the new classes are not known
in advance. Thus, the model needs to quickly learn from a few examples of new
classes whenever they arrive.

3DFSIS is an important vision task and has a wide range of applications
including autonomous driving, and augmented reality, especially in applications
where training a reliable 3D instance segmenter is prohibitively impossible due
to the expensive costs of collecting a sufficient amount of annotated point clouds.
However, learning in 3D point clouds is very challenging due to: (1) 3D point
clouds are unordered, imbalanced in density (dense near object surface but sparse
elsewhere); and (2) the variance in appearance, size, and shape between the sup-
port and query scenes is significantly higher than that of 2D images. These two
challenges are amplified in the few-shot setting where a very limited number of
labeled examples of new classes are provided, e.g. 1 to 5 shots at most compared
to 30 to 50 shots with ease in a 2D image. This is due to the reason that one
has to label point-by-point in a 3D point cloud rather than labeling approximate
polygons for instance masks as in a 2D image. Therefore, it is not trivial to adapt
any 2DFSIS to 3DFSIS.

A simple but strong baseline for 3DFSIS can be adapted from a 3D point
cloud instance segmenter, e.g. DyCo3D [16], to the few-shot setting. The baseline
is depicted in Fig. 1. First, similar points are grouped into candidates based
on their Euclidean centroids and semantic predictions. Then each candidate is
passed to a subnetwork to generate a kernel for dynamic convolution [40] so as to
obtain the final instance mask. To filter out the irrelevant candidates which do

Geodesic-Former 3

Mask Head
Dynamic

Convolution
(Sec. 3.5)

Query scene

Predicted query masksTransformer
Decoder
(Sec. 3.4)

Kernels

Geodesic distance
(Sec. 3.3)

Context
points

Similarity
Network

Anchor points

Backbone

Support scene

Support mask

Backbone

Masked
Avg.

Pooling

Support
feature

vector

Farthest-point
downsampling

Anchor points

Filter

Feature
aggregation

Context & anchor points
preparation (Sec. 3.2)

Fig. 2. Our proposed approach, Geodesic-Former, for 3DFSIS. Given support
and query scenes, a shared backbone is used to extract their features. Support features
are further masked average pooled with the support mask to obtain a support feature
vector representing the target class. Then the query features and support feature vector
are aggregated to obtain context points which are further sub-sampled in farthest-point-
downsampling operation to obtain anchor points representing the initial prediction of
the object location. Next, the geodesic distances between every anchor point to all the
context points are computed taking into account the imbalance in point cloud density
(distributed near object surface only). This geodesic distance is used as the positional
encoding to guide the transformer decoder whose key/value and query are context and
anchor points, respectively, so as to produce a kernel for each anchor point. Finally,
each kernel dynamically convolves with the features produced by the mask head along
with the geodesic distance embedding to obtain the final object instance mask.

not belong to the target class, one can use cosine similarity between the support
feature vector and the average feature vector of all points of each candidate.
This framework has several limitations. First, as mentioned above, 3D point
clouds are imbalanced in density and mostly distributed near the object surface
so that the Euclidean distance for clustering is unreliable, i.e. points that are
close together might not necessarily belong to the same object and vice versa.
Second, the clustering in DyCo3D relies heavily on the performance of the offset
centroid predictions, hence, it might be overfitting to some 3D shapes and sizes
of the training object classes, resulting in poor generalization to the test classes.

To address these limitations, we propose a new geodesic-guided transformer
decoder to generate the kernel for the dynamic convolution from a set of initial
anchor points, giving the name of our approach, Geodesic-Former. The overview
of Geodesic-Former is depicted in Fig. 2. First, geodesic distance embedding
based on the geodesic distances between each of the anchor points to all context
points is computed. In this way, the geodesic distance between two points belong-
ing to different objects is very large, helping differentiate different objects. Then

4 T. Ngo and K. Nguyen

this embedding is used as positional encoding to guide the later transformer
decoder and dynamic convolution. Second, to avoid overfitting to the shape and
size of training classes, we use a combination of the Farthest Point Sampling
[37], a similarity network, and a transformer decoder. The first samples initial
seeds from the query point cloud representing the initial locations of the object
candidates, the second filters out irrelevant candidates, and the third contex-
tualizes the foreground (FG) candidates to precisely represent objects with the
information of the context points in order to generate the convolution kernels.
In this way, as long as an initial seed belongs to an object, it can represent that
object. In contrast, for each point, DyCo3D has to predict exactly the center
point of the object it belongs to in order for the clustering to work well. This
is even harder when transferring to the new object classes in testing. Also, to
the best of our knowledge, we are the first to adopt the transformer decoder
architecture to the 3DIS and 3DFSIS.

In sum, our technical contributions are summarized as follows:

– We introduce a new 3D point cloud few-shot instance segmentation task.
– To evaluate the new task, we introduce new splits adapted from the Scan-

netV2 and S3DIS datasets.
– To address the new task, we propose a strong baseline (adapted from SOTA

3DIS methods) and our novel proposed approach, Geodesic-Former, com-
bining the transformer decoder with dynamic convolution in respect of the
geodesic distance encoding scene’s geometry.

In the following, Sec. 2 reviews prior work; Sec. 3 specifies Geodesic-Former;
and Sec. 4 presents our implementation details and experimental results. Sec. 5
concludes with some remarks and discussions.

2 Related Work

This section reviews closely related work in 2D and 3D instance segmentation.

3D point cloud instance segmentation (3DIS) approaches can be di-
vided into two groups: proposal-based and proposal-free. The proposal-based ap-
proaches [17,51,52] first detect 3D bounding boxes, then segment the foreground
region inside them. 3D-SIS [17] proposes a Mask R-CNN-based 3D instance seg-
mentation architecture, jointly learns features from both RGB images and 3D
point cloud. 3D-BoNet [51] simplifies the detection network by directly predict-
ing a fixed number of unoriented 3D bounding boxes from a global feature vector,
then segmenting foreground points inside each box. GSPN [52] generates propos-
als by reconstructing shapes from noisy observations and further refining these
proposals with a Region-based PointNet [36]. On the other hand, the proposal-
free approaches [44,20,3,16,8] learn embedding features then group points to in-
stances. SGPN [44] adopts the double-hinge loss to learn discriminative features
in order to compute the similarity matrix of paired points for grouping points.
PointGroup [20] predicts the 3D offset from each point to its instance’s centroid
and generates clusters from two sets: original points and shifted points. HAIS

Geodesic-Former 5

[3] proposes a hierarchical clustering method where a small cluster can be either
filtered out or absorbed by a larger cluster to become its part. DyCo3D [16]
adopts the same clustering approach but leverages dynamic convolution [46,40]
to generate 3D instance masks. SSTNet [25] constructs a super point tree based
on the point cloud’s semantic features and uses tree traversal to split nodes into
instances. All the 3DIS approaches assume the training and test classes are the
same, and there is a large number of annotated data for training. The setting of
3DFIS is fundamentally different: the training and test classes are disjoint and
we only have a few annotated examples for each test class.

Few-shot 2D instance segmentation approaches [30,50,9,33,34] extend the
Mask R-CNN[13] – a common 2D image instance segmenter – to the few-shot
setting. The support features are extracted from a few labeled examples and in-
corporated into the query feature map to segment objects of the target class. [33]
utilizes the anchor-free detector [41] to alleviate the overfitting problem of the
anchor boxes to the training classes and assembles the predicted object’s latent
parts into an object mask. However, 2D images are structured, grid-based, and
dense whereas 3D point clouds are unordered, irregular, and sparse. Therefore,
these approaches cannot be applied directly to 3DFSIS.

Few-shot 3D point cloud semantic segmentation (3DF3S). Recently,
[55] introduced the problem of few-shot 3D point cloud semantic segmentation.
From the support scene, multiple prototypes are extracted and propagated to
the query points based on their affinity matrix. However, this approach does
not distinguish different instances of the same object class. 3DFSIS is arguably
harder than 3DFSSS since we need to classify all points into instance labels
instead of semantic labels only.

Vision transformer has been applied to 2D image classification [7,42,53], ob-
ject detection [2,56,45,10,29,47], semantic segmentation [49,38], and instance seg-
mentation [24,12,6,18]. Furthermore, the transformer architecture is naturally fit
to process unordered 3D point clouds since its attention mechanism is permu-
tation invariant. Some recent approaches [27,54,31] have shown the potential of
transformers in some 3D tasks. [54] designs a self-attention network to process 3D
point clouds and achieve good results on 3D semantic segmentation, object part
segmentation, and object classification. [27,35,31] leverage transformer-based ar-
chitecture for 3D object detection. We are the first to adopt the cross-attention
transformer decoder with a special design for the 3DIS and 3DFSIS tasks.

3 Our Geodesic-Former

3.1 Problem setting

In training, we are provided a sufficiently large training set of base classes Ctrain,
i.e. {P t,mt}Tt=1, where P t,mt are the 3D point cloud of the scene t and its
ground-truth segmentation masks, respectively, and T is the number of training
samples. In testing, given K support 3D point cloud scenes Ps and their ground-
truth masksms to define a new target class ctest, we seek to segment all instances

6 T. Ngo and K. Nguyen

mq of the target class in a query scene Pq. It is worth noting that the target class
is different from the base classes, or ctest /∈ Ctrain. In this paper, we explore two
configurations: 1-shot and 5-shot instance segmentation.

To address this problem, we design our approach Geodesic-Former inspired by
DyCo3D [16]. The overview of Geodesic-Former is illustrated in Fig. 2. To extract
features Fs, Fq from the support and query point clouds Ps, Pq, respectively,
we employ a 3D U-Net with sparse convolution [11] used in [16]. In addition,
a support feature vector fs is extracted from the support features Fs via a
masked-average-pooling operation representing the target class.

In the following, Sec. 3.2 first describes how to prepare the context and an-
chor points for the transformer decoder. Sec. 3.3 specifies how to compute the
geodesic distance between each anchor point to every context point to guide
the transformer decoder and dynamic convolution. Sec. 3.4 discusses how the
transformer decoder generates the convolution kernel for the dynamic convolu-
tion, which is presented in Sec. 3.5, in order to produce the final instance mask.
Finally, Sec. 3.6 proposes the strategy to train our approach.

3.2 Context and Anchor Points Preparation

First, we aggregate support feature fs ∈ R1×d into the query features Fq ∈
RNq×d inspired by [48], resulting in integrated features of the context points
Fc ∈ RNq×d as follows:

Fc = Wproj ∗ [Fq ⊙ fs;Fq − fs;Fq] , (1)

where d is the number of feature channels, Nq is the number of query points,
Wproj ∈ R3d×d is the linear layer weight; ∗, [·; ·],⊙,− are the convolution, con-
catenation, channel-wise multiplication, and subtraction operations, respectively.
In this way, we preserve the original query point features along with the newly
rectified and subtracted features from the support.

Next, from the context points, a smaller set of points is sampled by a farthest-
point-down sampling to represent distinct object candidates. In our work, we
sample a large enough number of candidates so that they can cover all objects in
all cases. Then, a similarity network, which is a multi-layer perceptron (MLP),
is used to filter relevant candidates as anchor points Fa ∈ RNa×d, Na is the
number of anchor points, having high appearance similarity with the support
examples. After this step, we take the context points Fc and anchor points Fa

as input to the transformer decoder to generate the kernel of each anchor point.

3.3 Geodesic Distance Embedding Computation

The 3D point clouds captured by LiDAR sensors have an important property
that it is distributed unequally in the 3D space (dense near the object surface
and sparse elsewhere). As a result, two points are close in 3D Euclidean distance
but they might belong to two different objects. In this case, the geodesic distance
[21] which encodes the scene’s geometry would be a better choice as visualized in

Geodesic-Former 7

(a) (b)

Fig. 3. (a) Comparison between Euclidean distance and geodesic distance. For each
image, the green points are the top-2000 nearest neighbors of the red point in Euclidean
distance (left) and geodesic distance (right). (b) An example of FG/BG flipping in
training and testing making transformer classifier confused, i.e. sofa is labeled as BG
in training (left) but FG in testing (right).

Fig. 3a. In other words, if two points are close in Euclidean distance but there is
no path or their geodesic distance is too high, they clearly belong to two separate
objects. Therefore, we propose to use the geodesic distance between the anchor
points and every context point as geometry guidance to distinguish objects in
subsequent modules.

To obtain the geodesic distance, we first employ the ball query algorithm [37]
to get a directed sparse graph whose nodes are context points and each node
only connects to at most κ other nodes. There exists a directed edge from node
1 to node 2 if node 2 is among the κ nearest neighbors of node 1 and within a
radius τ , and the weight of the edge is always positive and equal to the local
Euclidean distance between the two nodes. After that, we use the shortest path
algorithm, i.e. Djikstra [5], to compute the length of the shortest path from
each anchor point to every context point in the obtained sparse graph as its
geodesic distance. Finally, the geodesic distance embedding Gi ∈ RNq×d of an
anchor point i is obtained by encoding its geodesic distance using the sine/cosine
function in [43].

3.4 Transformer Decoder

The transformer decoder takes as input the anchor points Fa ∈ RNa×d and
context points Fc ∈ RNq×d to produce the kernel W i ∈ RL for each anchor point
i, where L is the number of parameters in dynamic convolution. The decoder
follows the design of DETR [2] consisting of a multi-block of transformer layers
with two kinds of attention: self-attention between anchor points and cross-
attention between anchor and context points. Hence, each anchor point knows
each other and captures a complete object structure to generate a kernel for
the dynamic convolution. Notably, the attention mechanism in a transformer is
inherently fitted to the 3D point cloud since they are both unordered.

Importantly, to address the 3DFSIS, we make substantial modifications to
the positional encoding and output of the decoder. First, to guide the attention
in the transformer with the geodesic geometry structure as discussed in Sec. 3.3,
the geodesic distance embedding G is used as the positional encoding instead of
the embedding of 3D point coordinates. Second, we do not predict the object

8 T. Ngo and K. Nguyen

class, i.e., the foreground (FG)/background (BG) classification, due to the FG
and BG confusion of few-shot settings during the training and testing phase. In
particular, a lot of new classes presenting in training scenes but are labeled as
BG causing the trained classification head to predict them as BG (false negative)
in testing as depicted in Fig. 3b. Instead, the similarity network filters the FG
anchor points as described in Sec. 3.2.

3.5 Dynamic Convolution

To prepare features for dynamic convolution whose weights are predicted by
the transformer decoder, a mask head takes as input the query point features
Fq ∈ RNq×d to produce the mask features Fmask ∈ RNq×d by applying two blocks
of MLP with Batch Norm [19], and ReLU [32] in between. Also, the geodesic
distance is critical geometric cue to distinguish instances, we directly append
the geodesic distance embedding Gi ∈ RNq×d of each anchor point i to the mask
features in order to obtain the final instance mask m̂i ∈ [0, 1]Nq×1 in a dynamic
convolution as follows :

m̂i = Conv
(
[Fmask;G

i];W i
)
, (2)

where [·; ·] is the concatenation operation, and Conv is implemented with several
convolutional layers as in DyCo3D [16].

3.6 Training Strategy

Pretraining: First, we pretrain the U-Net backbone, mask head, and the trans-
former decoder with the standard 3D point cloud instance segmentation task on
the base classes. In this stage, the feature aggregation in Fig. 2 is not used since
we do not have support feature, instead, we copy the features of query points
to the context points directly. Also, we add a classification head on top of the
output of the transformer decoder to predict the semantic category γ̂i along
with the kernel generation to predict the mask m̂i for each anchor point i. The
number of classes is Γ + 1 where Γ is the total number of base classes of Ctrain

and one additional background class. The matching cost Cpretrain
match ∈ RNa×Ngt

+

between the prediction (γ̂i, m̂i) and the ground truth (γj ,mj) is computed as:

Cpretrain
match (i, j) = Lseg(m̂

i,mj) + Lcls(γ̂
i, γj), (3)

where Lseg is the dice loss [39], and Lcls is the sigmoid focal loss [26]. Based on

the matching cost Cpretrain
match , the Hungarian algorithm [23] is leveraged to find

the optimal 1-to-1 matching π∗, then the following loss is used for training:

Lpretrain
Hungarian =

NGT∑
i=1

Lseg(m̂
i,mπ∗(i)) +

Na∑
i=1

Lcls(γ̂
i, γπ∗(i)). (4)

If a class prediction γ̂i has no ground truths matched, it will be matched with
the background class.

Geodesic-Former 9

Table 1. Class splits of the ScannetV2 and S3DIS datasets. Fold 0 is used for training
while fold 1 is used for testing.

ScannetV2 S3DIS

Fold 0 Fold 1 Fold 0 Fold 1

cabinet sofa beam door
bed table board floor
chair window bookcase sofa
door picture ceiling table

bookshelf shower curtain chair wall
counter refrigerator column window
desk toilet

curtain sink
bathtub other furniture

Episodic training: We leverage the episodic training strategy – a common
approach for few-shot image classification – to mimic the test scenario in training.
That is, for each episode, we randomly sample a pair of support and query point
clouds Ps, Pq and their masks ms,mq from training examples of the base classes.
In this stage, the classification head is removed and we add feature aggregation
and similarity network to train with the transformer decoder while freezing the
backbone and mask head. This is the final architecture of Geodesic-Former as
depicted in Fig. 2. The following matching cost and loss are used to train and
Approach in this stage:

Cepisodic
match (i, j) = Lseg(m̂

i,mj), Lepisodic
Hungarian =

NGT∑
j=1

Lseg(m̂
i,mπ∗(i)). (5)

For K > 1 shots, we additionally apply the episodic training on a set of bal-
anced support-query pairs of the base and new classes to further fine-tune the
Geodesic-Former. In testing, the final support feature vector fs is the average
vector of all feature vectors fk

s of K support scenes.

4 Experiments

Datasets: To evaluate Geodesic-Former on the new 3DFSIS task, we introduce
two new datasets derived from ScannetV2 [4] and S3DIS [1] used for 3D point
cloud instance segmentation. ScannetV2 consists of 1613 point clouds of scans
from 707 unique indoor scenes with 20 semantic classes in total and 18 classes
for instance segmentation. We follow the common split of 1201, 312, and 100
for training, evaluating, and testing, respectively [16]. Inspired by [55] for 3D
few-shot semantic segmentation, we split the 18 foreground classes into two non-
overlapping folds based on the alphabetical order with nine classes each, one for
training classes (fold 0) and the other for test classes (fold 1). S3DIS is another
benchmark for 3D indoor scenes which contains 272 point clouds collected from
6 large-scale areas with 13 semantic categories. We only keep 12 main categories

10 T. Ngo and K. Nguyen

and remove the “clutter” class. We also split it into two folds with six classes
each. Area 5 containing 68 point clouds is used for testing while the rest is used
for training. Tab. 1 summarizes the class splits of ScannetV2 and S3DIS.

We report the results for the test classes in the following procedure: (1) we
randomly sample K = {1, 5} support examples, with their binary masks for
every class in the training set (with the purpose of saving the whole test set
for the query scenes only) and apply them to the whole test set, a.k.a the fixed
support set; (2) for each query scene in the test set, if a test class does not present
in the scene, we skip the evaluation of that class for that scene. To improve the
reliability of the measured metrics, we sample and evaluate all the approaches on
ten disjoint fixed support sets, and report the average with standard deviation.
In this setting, we consider the unlabeled points of new classes in the training
set as unseen points commonly used in 2DFSIS.

Evaluation metrics: For ScannetV2, we adopt the mean average precision
(mAP) and AP50 used in the instance segmentation task. For S3DIS, we apply
the metrics that are used in [20,16,14,15] to test classes: mCov, mPrec, and
mRec. They are the mean instance-wise IoU, mean precision, and mean recall.

Implementation details: We adopt the sparse convolution [11] to implement
the backbone network. The voxel size is set to 0.02 m for ScannetV2 and 0.05 m
for S3DIS, and the output channel of the backbone network is set to 16. To cal-
culate the geodesic distance, we employ the FAISS1 library for ball-query search,
then we re-implement by vectorizing the shortest path algorithm, i.e., Dijkstra’s
algorithm, in Pytorch to speed up the processing time. The transformer decoder
is the same as [31] consisting of four layers, each uses multi-head attention with
four heads, and the output dimension and the hidden dimension are set to 64.
We train our model using the Adam optimizer [22] with a cosine learning rate
scheduler [28]. During the pretraining phase, the initial learning rate is set to
10−2, and the number of training epochs is 500. After that, we train for another
200 epochs in episodic training with the learning rate of 5 × 10−3. Our data
augmentation is the same as [20]’s.

4.1 Ablation Study

We conduct several experiments on the validation set of ScannetV2 to study the
contribution of various components of our method with one shot, K = 1.

Similarity network, transformer decoder, geodesic distance. In Tab. 2,
the first and second rows show the performance of our baseline in Fig. 1, and a
per-point classification variant where we use cosine similarity to filter out irrele-
vant points before clustering by predicted objects’ centers. This variant performs
poorly as each point is classified independently without geometric cues of ob-
jects, and the classified points are so cluttered to form a complete shape. When
replacing the cosine similarity in the baseline with a similarity network, the
performance slightly increases, +0.4 in row 3. When the clustering algorithm

1 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

Geodesic-Former 11

Table 2. Ablation study on each component’s contribution to the final results. “SN”,
“TD”, and “GDE” denote similarity network, transformer decoder, and geodesic dis-
tance embedding, respectively. (*) denotes the baseline of per-point classification.

Combination Metric

SN TD GDE mAP AP50

Baseline (DyCo3D [16]) 6.2 11.7
Baseline (*) 4.9 9.7

✓ 6.6 12.5
✓ 6.7 13.1

✓ 7.8 14.2
✓ ✓ 7.6 14.3
✓ ✓ 8.7 14.9

✓ ✓ 9.4 17.1

Geodesic-Former ✓ ✓ ✓ 10.6 19.8
Geodesic-Former w/ cls. ✓ ✓ 4.5 10.2

16.4
18.1

19.8 20.1 19.7

9.2 10 10.6 10.5 10.5

of anchor points

8
10
12
14
16
18
20
22

32 64 128 192 256

AP50 mAP

Fig. 4. Study on the number of anchor points Na.

in the baseline is replaced by the transformer decoder, the performance also
slightly improves, +0.5 in row 4. Especially, when adding the geodesic distance
embedding to the dynamic convolution of the baseline, the performance is signif-
icantly boosted, +1.6 in row 5. This justifies the importance of geodesic distance
to the segmentation. When combining each pair of the three components, the
performance improves substantially over each component alone. Finally, our full
approach, Geodesic-Former achieves the best performance, 10.6 in mAP and 19.8
in AP50. These results show that when combining these components together,
the performance gain is much larger than using them separately. We also have
an ablation when turning off the similarity network and using the classification
head in the pretraining phase, the performance drops significantly, -6.1 in row
9. This justifies our claims that using the classification head in our 3DFSIS is
sub-optimal due to the FG/BG confusion as described in Sec. 3.4.

Number of anchor points. The results are summarized in Fig. 4. Using the
number of anchor points of 128 gives the best results. This is because using too
few anchor points cannot capture the diversity of objects in the scene, whereas
using too many does not boost the performance significantly.

12 T. Ngo and K. Nguyen

Table 3. Study on the number of dynamic convolution layers.

of layers 1 2 3 4

mAP on training set 22.6 ± 1.4 28.1 ± 1.7 28.0 ± 1.3 28.3 ± 1.5
mAP on testing set 3.4 ± 0.2 10.6 ± 0.6 9.3 ± 1.3 6.4 ± 1.9

Table 4. Study on ball query settings in Sec. 3.3 to form sparse directed graph.

mAP κ = 16 κ = 32 κ = 64 κ = 128

τ = 0.03 m 9.0 ± 0.9 9.3 ± 0.8 9.9 ± 0.7 10.1 ± 0.8
τ = 0.05 m 9.2 ± 0.6 9.7 ± 0.8 10.6 ± 0.6 10.6 ± 0.7
τ = 0.1 m 8.9 ± 1.2 9.3 ± 0.7 10.5 ± 1.0 10.3 ± 0.9

Number of layers in the dynamic convolution. As can be seen in Tab. 3,
using only a single layer of dynamic convolution leads to a significant drop in
performance (-7.2 in mAP). On the other hand, using too many layers may be
prone to overfitting the training data and harder to optimize due to a large
number of generated parameters. Using two layers gives the best results.

Ball query configuration. Tab. 4 reports the results with different nearest
neighbors κ and radii τ to form the directed sparse graph (as described in
Sec. 3.3) in order to compute the geodesic distance. From this table, κ = 64
and τ = 0.05 m give the best results.

4.2 Comparison with Prior Work

Since there is no prior work on 3DFSIS, we adapt three state-of-the-art (SOTA)
approaches on 3DIS: DyCo3D [16], PointGroup [20], and HAIS [3] to the few-
shot setting for comparing with our approach. The adapted version of DyCo3D
is exactly our baseline as depicted in Fig. 1. We apply the cosine similarity
filter to all methods to remove irrelevant proposals after the clustering stage
and the other modules are kept exactly the same as in their original papers.
The similarity thresholds for these methods are carefully fine-tuned to achieve
the best performance for a fair comparison, i.e. 0.95, 0.9, and 0.8 for DyCo3D,
PointGroup, and HAIS, respectively. Notably, the set aggregation module in
HAIS requires another statistical class-specific radius to aggregate fragments
into larger components. We calculate this radius based on the support scenes
and then apply it to the query scene.

Tab. 5 and Tab. 6 show the comparison results on the S3DIS and ScannetV2
datasets, respectively. For ScannetV2, HAIS performs worst among the four,
probably due to the sensitive class-specific radius in its set aggregation module.
Geodesic-Former consistently outperforms all of them by a large margin in all
metrics, i.e., +4.4 for one shot and +6.8 for five shots in the mAP. Moreover,
our method is more robust across different runs where the standard variations
of mAP and AP50 are only 0.7 and 1.4, respectively, compared with 2.0 and 3.1
of the second-best DyCo3D’s. For S3DIS, Geodesic-Former outperforms others
with a significant margin, i.e. in mCov and mRec, about +4 for one shot and

Geodesic-Former 13

Table 5. Comparison of Geodesic-Former and the strong baselines on ScannetV2.

K = 1 K = 5

mAP AP50 mAP AP50

DyCo3D [16] 6.2 ± 2.0 11.7 ± 3.1 6.4 ± 1.2 11.9 ± 2.2
PointGroup [20] 5.3 ± 1.2 10.3 ± 2.5 5.3 ± 0.5 11.7 ± 0.8
HAIS [3] 1.6 ± 0.6 3.5 ± 0.8 1.0 ± 0.2 2.3 ± 0.4

Geodesic-Former 10.6 ± 0.7 19.8 ± 1.4 13.2 ± 0.9 24.8 ± 1.3

Table 6. Comparison of Geodesic-Former and the strong baselines on S3DIS.

K = 1 K = 5

mCov mPre mRec mCov mPre mRec

DyCo3D [16] 13.5 ± 2.1 2.9 ± 1.0 4.1 ± 1.4 14.5 ± 1.3 3.1 ± 0.5 4.1 ± 1.4
PointGroup[20] 12.9 ± 2.8 4.6 ± 1.4 3.8 ± 1.3 13.7 ± 0.8 4.6 ± 0.6 3.8 ± 0.8
HAIS [3] 4.6 ± 1.2 8.1 ± 0.9 3.9 ± 1.3 5.0 ± 1.9 11.8 ± 2.0 4.1 ± 0.4

Ours 17.8 ± 1.5 7.0 ± 0.4 8.5 ± 1.7 20.2 ± 2.1 10.8 ± 1.3 12.2 ± 1.8

+7 for five shots. HAIS’s results are slightly better than ours in mPre due to its
strict threshold to get high precision but low recall rate.

4.3 Qualitative Results

Fig. 5 shows the qualitative results of our approach and others on ScannetV2. For
the training class “chair” shown on row 1, all approaches perform well. For the
test classes (rows 2-5), there are differences in the segmentation results. Geodesic-
Former outperforms others in the hard cases such as in the thin object (“show
curtain” - row 2), in the big object (“table” - row 3), and in the incomplete
object (“window” - row 4). These examples demonstrate the strong capability of
our approach when handling objects to various extent thanks to the transformer
decoder and the geodesic distance embedding. However, Geodesic-Former mis-
segments the sofa-stool as sofa due to their similar appearance (row 5).

Also, Fig. 6 illustrates the quality of the computed geodesic distance. For
each red point, we visualize the top reachable geodesic-distance nearest neighbors
(green points) and unreachable points (gray points) which have infinite geodesic
distance. It justifies that the geodesic distance helps distinguish objects much
better than Euclidean distance.

5 Discussion and Conclusion

Discussion. We have succeeded in applying our approach on a lower number
of shots only, i.e., 1 and 5 shots. For a higher number of shots (K > 5), the
improvement is insignificant due to the simple averaging operation. The study
on how to aggregate features from multiple supports in a 3D point cloud to
leverage their geometric structure would be an interesting research topic.

14 T. Ngo and K. Nguyen

Fig. 5. Qualitative results of Geodesic-Former and the strong baselines on the Scan-
netV2 dataset. Each row shows an example of the query scene with its GT mask and
the support scene with its GT mask (the smaller red-border box) on the first column.
The name of the support class is on the left next to GT.

Fig. 6. Representative examples of computed geodesic distance. For each image, the
green points is the top reachable geodesic-distance nearest neighbors of the red point.

Conclusion. In this work, we have introduced the new few-shot 3D point cloud
instance segmentation task and have proposed the Geodesic-Former – a new
geodesic-guided transformer with dynamic convolution to address it. Extensive
experiments have been conducted on the newly introduced splits of ScannetV2
and S3DIS datasets showing that our approach achieves robust and significant
performance gain on both datasets from the very strong baselines adapted from
the state-of-the-art approaches in 3D instance segmentation, i.e., +4.4 for one
shot and +6.8 for five shots in mAP on ScannetV2; +4.3 for one shot and +5.7
for five shots in mCov on S3DIS. We hope that our proposed problem, datasets,
and approach could facilitate future work in this direction.

Geodesic-Former 15

References

1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.:
3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2016) 9

2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision. Springer (2020) 5, 7

3. Chen, S., Fang, J., Zhang, Q., Liu, W., Wang, X.: Hierarchical aggregation for 3d
instance segmentation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (2021) 4, 5, 12, 13

4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
net: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017) 9

5. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Nu-
merische mathematik 1(1), 269–271 (1959) 7

6. Dong, B., Zeng, F., Wang, T., Zhang, X., Wei, Y.: Solq: Segmenting objects by
learning queries. arXiv preprint arXiv:2106.02351 (2021) 5

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 5

8. Engelmann, F., Bokeloh, M., Fathi, A., Leibe, B., Nießner, M.: 3d-mpa: Multi-
proposal aggregation for 3d semantic instance segmentation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
4

9. Fan, Z., Yu, J.G., Liang, Z., Ou, J., Gao, C., Xia, G.S., Li, Y.: Fgn: Fully guided
network for few-shot instance segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2020) 5

10. Fang, Y., Liao, B., Wang, X., Fang, J., Qi, J., Wu, R., Niu, J., Liu, W.: You only
look at one sequence: Rethinking transformer in vision through object detection.
arXiv preprint arXiv:2106.00666 (2021) 5

11. Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with
submanifold sparse convolutional networks. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2018) 6, 10

12. Guo, R., Niu, D., Qu, L., Li, Z.: Sotr: Segmenting objects with transformers.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(2021) 5

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (2017) 5

14. He, T., Gong, D., Tian, Z., Shen, C.: Learning and memorizing representative
prototypes for 3d point cloud semantic and instance segmentation. In: European
Conference on Computer Vision. Springer (2020) 10

15. He, T., Liu, Y., Shen, C., Wang, X., Sun, C.: Instance-aware embedding for
point cloud instance segmentation. In: European Conference on Computer Vision.
Springer (2020) 10

16. He, T., Shen, C., van den Hengel, A.: Dyco3d: Robust instance segmentation of
3d point clouds through dynamic convolution. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021) 2, 4, 5, 6, 8, 9,
10, 11, 12, 13

16 T. Ngo and K. Nguyen

17. Hou, J., Dai, A., Nießner, M.: 3d-sis: 3d semantic instance segmentation of rgb-
d scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4421–4430 (2019) 4

18. Hu, J., Cao, L., Lu, Y., Zhang, S., Wang, Y., Li, K., Huang, F., Shao, L.,
Ji, R.: Istr: End-to-end instance segmentation with transformers. arXiv preprint
arXiv:2105.00637 (2021) 5

19. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning.
PMLR (2015) 8

20. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: Pointgroup: Dual-set point
grouping for 3d instance segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2020) 4, 10, 12, 13

21. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proceedings
of the national academy of Sciences 95(15), 8431–8435 (1998) 6

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 10

23. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2), 83–97 (1955) 8

24. Li, Z., Wang, W., Xie, E., Yu, Z., Anandkumar, A., Alvarez, J.M., Lu, T., Luo, P.:
Panoptic segformer. arXiv preprint arXiv:2109.03814 (2021) 5

25. Liang, Z., Li, Z., Xu, S., Tan, M., Jia, K.: Instance segmentation in 3d scenes using
semantic superpoint tree networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (2021) 5

26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object de-
tection. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (2017) 8

27. Liu, Z., Zhao, X., Huang, T., Hu, R., Zhou, Y., Bai, X.: Tanet: Robust 3d object
detection from point clouds with triple attention. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34 (2020) 5

28. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016) 10

29. Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y., Sun, L., Wang, J.: Con-
ditional detr for fast training convergence. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (2021) 5

30. Michaelis, C., Ustyuzhaninov, I., Bethge, M., Ecker, A.S.: One-shot instance seg-
mentation. arXiv preprint arXiv:1811.11507 (2018) 5

31. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (2021) 5, 10

32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: International Conference on Machine Learning (2010) 8

33. Nguyen, K., Todorovic, S.: Fapis: A few-shot anchor-free part-based instance seg-
menter. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11099–11108 (2021) 5

34. Nguyen, K., Todorovic, S.: ifs-rcnn: An incremental few-shot instance segmenter.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 7010–7019 (2022) 5

35. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3d object detection with point-
former. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021) 5

Geodesic-Former 17

36. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2017) 4

37. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in Neural Information Processing
Systems (2017) 4, 7

38. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: Transformer for seman-
tic segmentation. arXiv preprint arXiv:2105.05633 (2021) 5

39. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Deep learning in medical image analysis and multimodal learning for clinical
decision support, pp. 240–248. Springer (2017) 8

40. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation.
In: European Conference on Computer Vision. Springer (2020) 2, 5

41. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object de-
tection. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (2019) 5

42. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. PMLR (2021) 5

43. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (2017) 7

44. Wang, W., Yu, R., Huang, Q., Neumann, U.: Sgpn: Similarity group proposal net-
work for 3d point cloud instance segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2569–2578 (2018) 4

45. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122 (2021) 5

46. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: Solov2: Dynamic and fast instance
segmentation. In: Advances in Neural information processing systems. vol. 33
(2020) 5

47. Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor detr: Query design for transformer-
based detector. arXiv preprint arXiv:2109.07107 (2021) 5

48. Xiao, Y., Marlet, R.: Few-shot object detection and viewpoint estimation for ob-
jects in the wild. In: European Conference on Computer Vision. Springer (2020)
6

49. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. arXiv
preprint arXiv:2105.15203 (2021) 5

50. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn: Towards
general solver for instance-level low-shot learning. In: Proceedings of the IEEE
International Conference on Computer Vision (2019) 5

51. Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni, N.: Learn-
ing object bounding boxes for 3d instance segmentation on point clouds. In: Ad-
vances in Neural Information Processing Systems (2019) 4

52. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: Gspn: Generative shape pro-
posal network for 3d instance segmentation in point cloud. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019) 4

18 T. Ngo and K. Nguyen

53. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., Tay, F.E., Feng, J., Yan,
S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet.
arXiv preprint arXiv:2101.11986 (2021) 5

54. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (2021)
5

55. Zhao, N., Chua, T.S., Lee, G.H.: Few-shot 3d point cloud semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2021) 5, 9

56. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020) 5

	Geodesic-Former: a Geodesic-Guided Few-shot 3D Point Cloud Instance Segmenter

