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Abstract. Recently, great progress has been made in 3D deep learning
with the emergence of deep neural networks specifically designed for
3D point clouds. These networks are often trained from scratch or from
pre-trained models learned purely from point cloud data. Inspired by
the success of deep learning in the image domain, we devise a novel
pre-training technique for better model initialization by utilizing the
multi-view rendering of the 3D data. Our pre-training is self-supervised
by a local pixel/point level correspondence loss computed from perspective
projection and a global image/point cloud level loss based on knowledge
distillation, thus effectively improving upon popular point cloud networks,
including PointNet, DGCNN and SR-UNet. These improved models
outperform existing state-of-the-art methods on various datasets and
downstream tasks. We also analyze the benefits of synthetic and real data
for pre-training, and observe that pre-training on synthetic data is also
useful for high-level downstream tasks. Code and pre-trained models are
available at https://github.com/VinAIResearch/selfsup_pcd.git.

Keywords: Self-supervised learning · point cloud analysis · multiple-view
rendering · 3D deep learning.

1 Introduction

Pixels and points are basic elements in computer vision for visual recognition. In
the past decade, image collections have been successfully used to train neural
networks for common visual recognition tasks, including object classification and
semantic segmentation. Concurrently, advances in depth-sensing technologies,
including RGB-D and LiDAR sensors, have enabled the acquisition of large-scale
3D data, facilitating the rapid development of visual recognition methods in 3D,
notably neural networks for point cloud analysis in the last few years. Unlike
images, annotation for point clouds are generally more expensive to acquire due
to the laborious process of scene scanning, reconstruction, and annotation, and
thus point cloud neural networks are often trained with datasets that are much
smaller than image datasets.

A potential direction to improve the robustness for point cloud neural networks
is self-supervised learning. By letting the point cloud network perform some pre-
text tasks before supervised learning, a process commonly known as pre-training,
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the network can perform more effectively than that trained from scratch. With
self-supervised learning, the pre-text tasks are designed so that the pre-training
does not use additional labels. In 3D deep learning, some initial effort has been
spent on investigating this direction [46,54,58]. However, most previous works
solely considered self-supervised learning in the 3D domain; only a few works
exploited images to support the learning of point cloud neural networks. In an
early work, Pham et al. [40] trained autoencoders on both images and point
clouds and applied constraints on the latent space of both domains, allowing
feature transfers between 2D and 3D. Inspired by the recently growing literature
on network pre-training, we explore how to use images to more effectively (self-
)supervise point cloud neural networks.

Particularly, in this paper, we propose a method that utilizes multi-view
rendering to generate pixel/point and image/point cloud pairs for self-supervising
a point cloud neural network. We train two neural networks, one for image and
one for point cloud, respectively, and direct both networks to agree upon their
latent features in the 2D and 3D domains. To achieve this, we use the pixel
and point correspondences to formulate a local loss function that encourages
features of the correspondences to be similar. This is well-motivated by projective
geometry in 3D computer vision that defines the coordinate mapping between
the image and 3D space. To further regularize the self-supervision, we utilize
knowledge distillation to formulate a global loss that encourages the feature
distribution between images and point clouds to be similar as well. Our method
works even when there is big domain gap between the pre-train data and test
data, e.g., between synthetic and real data.

In summary, we make three technical contributions in this paper: (1) a pre-
training technique built upon multi-view rendering that advocates the use of
multi-view image features to self-supervise the point cloud neural network; (2) a
local loss function that exploits pixel-point correspondence in the pre-training;
(3) a global loss function that performs knowledge distillation from the images to
the 3D point clouds.

2 Related work

3D deep learning: Building a neural network to analyze 3D data is a non-
trivial task. Early attempts involve extending neural networks for images to
work with volumes [37], and projecting 3D data to 2D views that can be used
with traditional neural networks [51]. Recent methods in deep learning with
point clouds take a different approach by letting a network input point clouds
directly. Two major directions can be taken to implement such idea: learning
per-point features by pointwise MLP [43,44], and learning point features by
examining points in a local neighborhood by custom convolutions tailored for
point sets [32,26,30] and by graph neural networks [55,48,6]. Notable methods in
such directions include PointNet [43] and DGCNN [55]. An inherent limitation
of PointNet-based approaches is that they can only process a few thousands of
points, limiting the ability to handle large-scale point clouds, where a sliding
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window is often used as a workaround [43]. More recent developments include the
use of sparse tensor and sparse convolution [9,13,14] on large-scale point clouds
for semantic segmentation and 3D object detection. We refer readers to [16] for
a survey of deep learning methods for point clouds.

Self-supervised learning: Unsupervised pre-training is a useful technique in
deep learning with proven success in natural language processing [11] and represen-
tation learning [7,15,21,38,61,47,52,20]. For pre-training, one can use generative
modeling techniques based on GANs [56,2] and autoencoders [20,54,19,60], or
other self-supervised learning techniques [58,46,8,41,24,59,4,1]. Pre-training is
relevant to knowledge distillation [23], a class of techniques for transferring fea-
tures learned from a large network (teacher network) to a small network (student
network). Here we assume that the pre-text task is rather general and can be very
different to the downstream tasks, and so a subset of the layers in the pre-trained
can be transferred depending on the downstream task.

Self-supervised learning techniques for pre-training 3D point cloud networks
have been recently explored from multiple perspectives. Early works use a pre-
text task for self-supervised learning. The pre-text task can be solving a jigsaw
puzzle [46], where a point cloud is subdivided into randomly arranged voxels,
and the task is to predict for each point the voxel ID the point belongs to.
Another pre-text task is point cloud completion [54] (OcCo), where a mechanism
similar to mask-based pre-training in natural language processing is utilized. As
an extension of autoencoder on 3D point clouds, Eckart et al. [12] apply soft
segmentation on point clouds and enforces these partitions to comply a latent
parametric model in an encoder-decoder network paradigm. Recent contrastive
learning is also shown to be effective for pre-training 3D point clouds [58,62].
PointContrast [58] create positive pairs and negative pairs for contrastive learning
by the correspondences between two camera views of a point cloud. DepthCon-
trast [62] learn the representation with multiple 3D data formats including points
and voxels.

Self-supervised learning with other 3D data modalities [17,34,18,25,33,3,40]
has also been explored. Jing et al. [28,29] (CM) use 3D data with multi-modality
and build cross-modal and cross-view invariant constraints, maximizing cross-
modal agreement of the features of point cloud, mesh, and images, and maximizing
cross-view agreement with the image features. Hou et al. [25] use contrastive learn-
ing on multi-view images constraints and image-geometry constraint. However,
they only focus on 2D downstream tasks. Huang et al. [27] (STRL) proposed self-
supervised learning for a sequence of point clouds which utilizes spatio-temporal
cues. Pham et al. [40] (LCD) leverages a 2D-3D correspondence dataset and a
triplet loss to transfer features from 2D to 3D only on small cropped regions of
images and 3D point clouds. Compared with LCD [40], our method is largely
different as we self-supervise 3D point features via multi-view projection in the
entire image space. LCD [40] is suitable for image matching and point cloud
registration tasks, while our method is suitable for point cloud analysis tasks
such as classification and segmentation.
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Fig. 1: Overview of our proposed method. The main proposal is pre-training steps
that exploit multi-modal data, including multi-view images and point clouds, to
learn a 3D feature encoder for effective point cloud representation. This model is
then fine-tuned for different downstream tasks.

There are a few concurrent works [3,31]. In [3], the authors considered RGB
rendering of the object surfaces but required the mesh textures in addition to
the geometry for rendering. Our rendering is more practical in that we consider
different rendering techniques and only require colorless point clouds. In [31], the
authors focus on data from autonomous driving datasets including KITTI and
nuScenes. Our method focuses on object datasets.

3 Self-supervised learning for 3D point clouds

In this section, we describe the proposed self-supervised learning with multi-
view rendering for point clouds. Our goal is to leverage multi-modal data of 3D
objects, in which each object is associated with a 3D point cloud and multiple
2D images from various view points to pre-train the point cloud network. We
propose to use multi-view rendering to generate images for input 3D objects that
pair with the point clouds for pre-training. Using rendered images to pre-train
point cloud networks implies an advantage that different 3D data representations,
including triangle mesh and point cloud, can all be converted into a unified 2D
representation to pre-train the networks. To ease this pre-training process, we do
not require annotation for the 3D objects and rely on self-supervised learning
techniques for the pre-training.

Our method consists of two steps. First, we learn feature representation for
2D images with self-supervised learning by ensuring the similarity between the
representation features of two transformed images of the same original image.
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Second, we use the feature representation of 2D images to learn the 3D feature
representation for 3D point clouds. We illustrate the overview of our method in
Fig. 1, and we will describe the two steps in details in the next two subsections.

Let D denote the pre-training data, D = {Pi, {yij ,Mij}mj=1}ni=1, where n is
the number of objects in the dataset and m the number of 2D views for each
object. Pi is the 3D point cloud of the ith object, yij is the projected image of
the ith object to the jth view using the projection matrix Mij .

3.1 Learning feature representation for 2D images

Let us start with learning the discriminative feature representation for multi-view
images. In this step, we simply treat all object views {{yij}mj=1}ni=1 as items of a
set. Following SimCLR [7], we randomly sample a batch of k images from this
image set in each training iteration. For each image in the batch, we randomly
sample two augmentation operators (crop, color distortion, and Gaussian blur)
to generate a pair of correlated images based on the original image. Given an
image xi in the batch, let x′i and x′′i be its augmented images, respectively. Our
objective is to learn a feature extraction network f2d so that the resulting feature
vectors for different augmentations of the same image x′i and x′′i are similar,
while both x′i and x′′i should be different from the feature vectors of other image
augmentations x′j and x′′j for j 6= i. We therefore define the loss for image xi as:

L2d(i) =− log

(
ψ(x′i,x

′′
i )

ψ(x′i,x
′′
i ) +

∑
j 6=i(ψ(x

′
i,x
′
j) + ψ(x′i,x

′′
j ))

)
(1)

− log

(
ψ(x′′i ,x

′
i)

ψ(x′′i ,x
′
i) +

∑
j 6=i(ψ(x

′′
i ,x
′
j) + ψ(x′′i ,x

′′
j ))

)
.

Here, ψ(xi,xj) is the function that measures the similarity between two images,
and we use the exponential cosine similarity of the two feature vectors, i.e.,

ψ(xi,xj) = exp
(
cos
(
g2d(f2d(xi)), g

2d(f2d(xj))
)
/τ
)
, (2)

where τ is the temperature hyper-parameter, and g2d is the projection layer
(nonlinear projection layer).

The loss function for a batch of k images is: L2d = 1
k

∑k
i=1 L2d(i). In each

optimization iteration, we calculate the gradient of this loss to optimize for the
parameters of the feature extractor network f2d, which is a fully convolutional
neural network. The input to the network is an RGB image of dimensions
H×W×3 and the output is a 3D tensor of size H1×W1×C1, where C1 is the
number of output channels and H1 = H/2s,W1 =W/2s, with s being the number
of down-sampling layers in the network. The output tensor can be vectorized to
form a global representation vector for the entire image. This output tensor can
also be up-sampled to yield a feature map having the same width and height as
those of the input image; in this case, there is a corresponding C1-dim feature
vector for each pixel of the input image.
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3.2 Knowledge transfer from 2D to 3D

Once the feature extraction function f2d for 2D images has been learned, we will
use it to learn a point-wise feature extraction function f3d for 3D point clouds.
The input to this feature extraction is a point cloud of L points, and the output
is a 2D tensor of size L×C2, where C2 is the number of feature dimensions. Each
point of the point cloud has a corresponding C2-dimensional feature vector. To
learn the feature extraction f3d, we develop a novel scheme that uses 2D-to-3D
knowledge transfer. We use both global and point-wise knowledge transfer.

Global knowledge transfer. For global knowledge transfer, we minimize the
distance between the aggregated 2D feature vector and the aggregated 3D feature
vector by

L3d
glb =

1

n

n∑
i=1

∥∥∥∥g2d(max
j
f2d(yij)) −g3d(max f3d(Pi))

∥∥∥2 ,
where Pi is the point cloud of the ith object and yij is the jth view of the ith
object. f2d is the feature extractor for 2D images, which was explained in Sec. 3.1.
Function maxj f

2d(yij) is the pixel-wise max-pooling across different 2D views.
Function f3d is the feature extractor for 3D point cloud, which we seek to learn
here. max f3d(Pi) is element-wise max-pooling among all feature vectors of all
points of point cloud Pi. Both g2d and g3d are nonlinear projection layers that
transform 2D feature and 3D feature vectors to the feature space, respectively.

Point-wise knowledge transfer: In addition to global knowledge transfer, we
use contrastive learning that minimizes the distance between feature representa-
tion of a 3D point and its corresponding 2D pixel. To determine the point-to-pixel
correspondences, we project each point of the point cloud Pi to each image view
yij using the camera projection matrix Mij to have y2d

ij =MijPi, where y2d
ij is

a set of pixels from the rendered image yij corresponding to Pi. For point-wise
knowledge transfer, in each optimization iteration, we sample a batch of k corre-
sponding pixel-point pairs, and let {(z2di , z3di )}ki=1 be the corresponding set of
feature vector pairs. For the ith pixel-point pair, z2di is obtained by: (1) using
the 2D feature extraction function f2d on the image that contains the pixel; (2)
passing the output to the upsampling feature projection module u2d; and (3)
extracting the feature vector at the location of the pixel in the projected feature
map. z3di is obtained by: (1) using the 3D feature extraction function f3d on the
point cloud containing that point; (2) passing the output through the projection
function g3d; and (3) extracting the corresponding feature vector of the point in
the point cloud.

For point-wise knowledge transfer, we maximize the similarity between the
pixel representation vector and the point representation vector, using a loss
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function inspired by SimCLR [7]. The loss term for the ith pixel-point pair is:

L3d
pnt(i) =− log

(
ψ(z2di , z

3d
i )

ψ(z2di , z
3d
i ) +

∑
j 6=i(ψ(z

2d
i , z

2d
j ) + ψ(z2di , z

3d
j ))

)
(3)

− log

(
ψ(z3di , z

2d
i )

ψ(z3di , z
2d
i ) +

∑
j 6=i(ψ(z

3d
i , z

2d
j ) + ψ(z3di , z

3d
j ))

)
,

where ψ(·, ·) is the exponential cosine function defined in Eq. (2). Intuitively,
both 2D and 3D features can be regarded as augmentations of a common latent
feature, so they form a positive pair of which similarity can be maximized with
the contrastive loss. The total loss function for a batch of k pixel-point pairs is:
L3d
pnt =

1
k

∑k
i=1 L3d

pnt(i).

Combined loss function. To pre-train the point cloud network, we minimize
a loss function that is the weighted combination of the global knowledge transfer
loss and the point-wise knowledge transfer loss:

L3d = λglbL3d
glb + λpntL3d

pnt. (4)

In our experiments, we simply use λglb = λpnt = 1. After pre-training, we can
now use the pre-trained weights to initialize the training of downstream tasks.

4 Experiments

4.1 Implementation details

Dataset for pre-training. Unless otherwise mentioned, we use ModelNet40 [57]
for pre-training. ModelNet40 is a synthetic dataset that includes 9,480 training
samples and 2,468 test samples in 40 categories. ModelNet40 represents each
object by a 3D mesh, making it suitable for our multi-view rendering purpose.
For each object in the training set of ModelNet40, we generate its point cloud
using farthest-point sampling. We render the object into multi-view images by
moving a camera around the object. Unless otherwise mentioned, each point
cloud has 1024 points rendered into 12 views with 32×32 resolution. We use 12
views as they tend to cover all object directions in general. We keep the views in
low resolution of 32×32 to avoid out of memory usage at training.

Our multi-view rendering is implemented as follows. First, each object is
normalized into a unit cube. To generate multi-view images from a mesh object,
we used Blender [45] with fixed camera parameters (focal length 35, sensor width
32, and sensor height 32) and a light source. The camera positions are chosen to
cover the surrounding views of the object, and the distances from each camera
to its neighbor positions are equal.

2D feature representation learning. We use ResNet50 [22] as a 2D feature
extractor f2d in 2D self-supervised learning process. We use Adam optimizer
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DGCNN

Random Jigsaw OcCo CM STRL Ours

MN40 [57] 92.7±0.1 92.9±0.1 92.9±0.0 93.0±0.1 93.1±0.1 93.2±0.1
SO [53] 82.8±0.5 82.1±0.2 83.2±0.2 83.0±0.2 83.2±0.2 84.3±0.6
SO BG [53] 81.4±0.5 82.0±0.4 82.9±0.4 82.2±0.2 83.2±0.2 84.5±0.6

Table 1: Comparison among random, Jigsaw [46], OcCo [54], CM [29], STRL [27],
and our initialization to the object classification downstream task. We reported
the mean and standard deviation at the best epoch over three runs.

with the initial learning rate 0.001 without learning decay. We then train the
self-supervised model with 1000 epochs and batch size 512.

3D feature representation learning. We experiment with two common back-
bones PointNet [43] and DGCNN [55], which can be utilized for both classification
and segmentation tasks. For PointNet [43], we use Adam optimizer with the
initial learning rate 0.001, which decays 0.7 every 20 epochs. The momentum of
batch normalization starts as 0.5, then divided by 2 every 20 epochs. For DGCNN
[55], we use an SGD optimizer with the initial learning rate 0.1 and momentum
0.9. We use CosineAnnealingLR scheduler [35] for learning rate decay. For both
backbones, we train the model with 250 epochs, 200 epochs, and 100 epochs for
classification, part segmentation, and semantic segmentation task, respectively,
with the same batch size as 32. After getting the pre-trained models, we test
their effectiveness in training with different downstream tasks.

4.2 Object classification

We first experiment with object classification for 3D point cloud analysis. Two
standard benchmarks are used, namely ModelNet40 [57] and ScanObjectNN
[53] dataset. We follow the previous paper [54] to use ModelNet40 in both pre-
training and downstream tasks. ScanObjectNN is a real-world dataset that has
15 categories with 2,321 and 581 samples for training and testing, respectively.
We use the default variant (OBJ_ONLY, denoted by ScanObjectNN) and the
variant with background (OBJ_BG, denoted by ScanObjectNN BG). We follow
the experimental setting in the original PointNet [43].

We compare the performance of DGCNN [55] with and without pre-training.
The results are shown in Table 13. We also provide comparisons with the PointNet
backbone [43] in the supplementary material. As can be seen, models with pre-
training outperform their randomly initialized counterparts. We further compare
our method to previous point cloud pre-training methods, including Jigsaw [46],
OcCo [54], CM [29], and STRL [27]. Particularly, Jigsaw [46] learns to solve
jigsaw puzzles as a pretext task for pre-training. OcCo [54] is based on mask-
based pre-training from natural language processing to propose a point cloud
completion task for pre-training. CM [29] considered self-supervision from cross-
modality and cross-view feature learning, which shares some similarity to ours.
Our method differs in that we use a contrastive loss to learn 2D features and
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Fig. 2: Test-set accuracy over different training epochs in the object classification
task. The plots show that previous pre-training methods are only marginally more
effective than random initialization while our method shows a clear improvement.

PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

5% 73.2 73.8 73.9 77.9 82.0 82.1 82.3 84.9
10% 75.2 77.3 75.6 79.0 84.7 84.1 84.9 86.6
20% 81.3 82.9 81.6 84.6 89.4 89.2 89.1 90.2
50% 86.6 86.5 87.1 87.6 91.6 91.8 91.7 92.4
70 % 88.3 88.4 88.4 88.7 92.3 92.4 92.5 92.8
90 % 88.5 88.8 88.8 89.4 92.6 92.9 92.9 93.1

Table 2: Performance of the object classification task trained with fewer data.
Our method has significant gains compared to other initialization methods. We
reported the mean at the best epoch over three runs.

an L2 loss to match 2D-3D features while CM [29] uses a triplet loss for 2D
features and a cross-entropy loss for matching 2D-3D features. STRL [27] explored
self-supervision with spatial-temporal representation learning. In Table 13, it can
be seen that our proposed self-supervision with contrastive loss and multi-view
rendering outperforms other initialization methods on both ModelNet40 and
ScanObjectNN dataset.

4.3 Network Analysis

Accuracy over epochs. Fig. 2 plots the accuracy on the test set over different
training epochs. The proposed initialization helps both PointNet and DGCNN
converge faster and obtain better accuracy than other initialization methods. For
example, when we use ModelNet40 with 10% training dataset, the model with
our initialization converges after around 15 epochs, while with other initialization
methods, it takes around 40 epochs. For ScanObjectNN (OBJ_BG variant),
the models converge after about 20 epochs with our initialization and about 45
epochs with other methods.

Training size. Our pre-training allows the point cloud network to be trained
with less data compared to initialization with random weights. To demonstrate
this, we reduce the number of samples in the training set of ModelNet40 to 5%,
10%, 20%, 50%, and 70%. We then use these datasets to train the model for
the object classification task. Finally, we evaluate these learned models on the
test set of ModelNet40. Table 16 shows the results with random initialization,
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Jigsaw [46], OcCo [54], and our initialization, respectively. As can be seen, models
using our proposed initialization outperform other models.

Number of views. We analyze the influence of multi-view rendering in our
pre-training performance. We render the shapes with 4, 8, 12, and 24 views in
object classification task. The results are shown in Table 3. For PointNet, the
performance is best with 8 views, while for DGCNN it is generally enough to use
4 views, but DGCNN for ScanObjectNN performs best with 24 views.

PointNet DGCNN

4-views 8-views 12-views 24-views 4-views 8-views 12-views 24-views

MN40 [57] 88.9 89.2 88.9 88.9 92.8 92.3 92.5 92.3
SO [53] 79.0 80.4 79.3 79.1 82.7 82.6 82.8 84.9
SO BG [53] 74.2 77.1 75.7 76.6 82.8 81.9 82.6 81.4

Table 3: Performance of object classification tested with different number of views
in multi-view rendering.

Classification with SVM. To evaluate the generalization ability of our pre-
trained model, we follow a similar test scenario in [46]. First, we freeze the
weights of the pre-trained model and pass the 3D object through this model to
obtain their embeddings. Then, we train a Support Vector Machine (SVM) on
the embeddings of the train set and evaluate it on the test set on three datasets
ModelNet40, ScanObjectNN, and ScanObjectNN (OBJ_BG variant). For SVM,
we used grid search to find the best parameter of SVM with a Radial Basis
Function kernel. The results are shown in Table 4. The proposed initialization
outperforms the other initialization methods, Jigsaw and OcCo, sometimes by
a wide margin as in the ScanObjectNN (OBJ_BG variant). We also provide
additional comparisons to previous self-supervised methods on ModelNet40 in
Table 5. As can be seen, our proposed method outperforms almost other methods
in both PointNet and DGCNN, except in PointNet, our method is ranked second
while ParAE [12] performs best.

PointNet DGCNN

Jigsaw OcCo Ours Jigsaw OcCo Ours

ModelNet40 [57] 82.5 87.2 89.7 83.1 89.5 91.7
ScanObjectNN [53] 49.7 62.1 70.2 57.8 69.0 76.3
ScanObjectNN BG [53] 48.9 61.7 69.5 51.1 67.5 74.2

Table 4: The result of SVM applied on the object embedding learned from
different initializations. It shows that features learned by our method are more
discriminative than other methods, resulting in more accurate classifications.

Ablation study of loss functions. Table 6 reports the performance of our
method for the classification task when both global loss and pixel-point loss are
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PointNet DGCNN

Rotation [41] 88.6 99.8
STRL [27] 88.3 90.9
ParAE [12] 90.3 91.6
CrossPoint [3] 89.1 91.2
Ours 89.7 91.7

Table 5: More comparisons of SVM classification on ModelNet40.

PointNet DGCNN

L3d
glb L3d

pnt L3d L3d
glb L3d

pnt L3d

ModelNet40 [57] 88.5 88.5 88.9 92.4 92.1 92.5
ScanObjectNN [53] 77.6 78.8 79.3 81.8 81.1 82.8
ScanObjectNN BG [53] 74.5 74.2 75.7 81.6 81.6 82.6

Table 6: Effect of loss function choice to our pre-training.

RGB Silhouette Shading

ModelNet40 [57] 88.3 88.9 88.9
ScanObjectNN [53] 79.7 78.8 79.3
ScanObjectNN BG [53] 75.1 75.6 75.7

Table 7: Effect of rendering techniques to the pre-training on PointNet [43].

used together or individually. The network achieves the best performance when
trained with both losses. Using either global loss or pixel-point loss results in
accuracy drop especially for the ScanObjectNN dataset [53]. This is because the
global loss is only useful in distilling knowledge from an image view to a point
cloud while the pixel-point loss encourages the model learn consistent features
locally. Using both losses lets the model have the best of both worlds.

Multi-view rendering. Our pre-training requires multi-view image rendering,
which can be implemented by a wide range of rendering techniques. We study the
effect of images rendered from the object mesh, 3D position encoding, and object
silhouette on the classification task (please refer to example rendering in Fig. 3).
For the original object mesh, we use Blender [45] to render the object geometry
with Phong shading, resulting in grayscale shaded images. For 3D position
encoding, the images are rendered directly from point clouds. Specifically, we
first assign a pseudo-color (RGB) to each point of a point cloud based on their
3D coordinates, then project the points to the image plane with preset camera
projection matrices. For object silhouette, the process is generally similar except
that we use black instead of the pseudo-color for each point in the point clouds.
For pixel that has more than one corresponding point, we choose the point with
minimum distance to the camera.

The performance of object classification with different rendering techniques
is reported in Table 12, where there is no best technique overall. Using shaded
images results in slightly higher accuracy than using position encoding and
silhouette rendering in ModelNet40 and ScanObjectNN BG. This is because



12 B. Tran et al.

Fig. 3: Object rendering with position encoding (RGB), silhouette, and shading.

PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

mAcc 93.3 ±0.2 93.0 ±0.0 93.3 ±0.1 93.4 ±0.0 94.2 ±0.0 94.1 ±0.0 94.3 ±0.0 94.2 ±0.1
mIoU 83.1 ±0.3 83.2 ±0.1 83.0 ±0.2 83.3 ±0.1 84.7 ±0.0 84.5 ±0.1 84.7 ±0.1 84.7 ±0.1

Table 8: The result of four initialization in the part segmentation task on the
ShapeNetPart dataset [55]. We reported the mean and standard error of mAcc
and mIoU over three runs.

PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

mAcc 83.9 82.5 83.6 85.0 86.8 86.8 87.0 87.0
mIoU 43.6 43.6 44.5 46.7 49.3 48.2 49.5 49.9

Table 9: Fold 1 of overall point accuracy (mAcc) and mean Intersection-over-Union
(mIoU) on the S3DIS (Stanford Area 5 Test) [5].

shaded images often have more details than position encoding and silhouette
images since shaded images are rendered from meshes. Exploring more robust
rendering techniques for self-supervised learning is left for future work.

4.4 Part segmentation and scene segmentation

Beyond classification, we conduct experiments to validate our pre-training for
semantic part segmentation and scene segmentation tasks. We first experiment
with object part segmentation on the ShapeNetPart dataset [55] that includes
16,881 objects from 16 categories. Each object is represented by 2,048 points,
and each point belongs to one of 50 part types. Most objects in the dataset
are divided into two to five parts. As shown in Table 8, our initialization is
slightly better than random initialization, Jigsaw, and OcCo in both overall point
accuracy (mAcc) and mean Intersection-over-Union (mIoU) metric. We observed
that the improvement is minor in the part segmentation task because the network
architecture used for part segmentation is largely different from the pre-trained
networks, and therefore only a few layers of the part segmentation networks can
be initialized by the pre-trained model.

We also experiment with semantic scene segmentation on the Stanford Large-
Scale 3D Indoor Spaces dataset (S3DIS) [5]. This dataset contains point clouds of
272 rooms from 6 areas and 13 categories. Each room is split into 1m×1m blocks.
Each point is represented by a 9D vector including XYZ, RGB, and normalized
location in the room. During training, each block is sampled with 4096 points,
but during testing, all points are used. The results are shown in Table 15. We see
that models initialized by our method outperform others in both PointNet [43]
and DGCNN [55].
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Dataset
Task

(Metric)
Random PC [58]

ModelNet
Ours

ModelNet
PC [58]
ScanNet

Ours
ScanNet

S3DIS (Area 5) sem. seg. (Acc) 72.5 71.2 -1.3 73.2 +0.7 73.0 +0.5 73.0 +0.5
S3DIS (Area 5) sem. seg. (IoU) 64.5 64.1 -0.4 66.0 +1.5 66.1 +1.6 66.5 +2.0

ScanNet sem. seg. (Acc) 80.2 80.3 +0.1 81.1 +0.9 80.8 +0.6 81.0 +0.8
ScanNet sem. seg. (IoU) 72.4 72.5 +0.1 73.3 +0.9 73.1 +0.7 73.6 +1.2

ScanNet 3D det. (AP50) 35.2 36.6 +1.4 38.2 +3.0 36.1 +0.9 39.2 +4.0
ScanNet 3D det. (AP25) 56.5 58.2 +1.7 58.4 +1.9 59.5 +3.0 60.3 +3.8

SUN RGB-D 3D det. (AP50) 32.3 34.8 +2.5 34.9 +2.6 34.8 +2.5 35.1 +2.8
SUN RGB-D 3D det. (AP25) 55.5 57.8 +2.3 58.1 +2.6 57.4 +1.9 57.8 +2.3

Table 10: Comparison to PointContrast (PC) [58] on the semantic segmentation
and 3D object detection task on S3DIS dataset [5], ScanNet dataset [10], and SUN
RGB-D dataset [50]. Our method outperforms PointContrast when pre-trained
on both datasets. The subscript indicates the performance difference compared
to the Random case.

4.5 Pre-training with synthetic vs. real-world data

Multi-view rendering can be easily used for self-supervised learning when working
with synthetic data as we have shown with ModelNet40 [57]. Real-world 3D
datasets, however, often do not provide such multi-view images, limiting our
choices for pre-training. In this section, we investigate the role of synthetic
and real-world data in pre-training by comparing to PointContrast [58] and
DepthContrast [62] on the segmentation and detection task. We run different
experiments using Sparse Residual U-Net (SR-UNet) [9] as the network backbone.
Compared to PointNet and DGCNN backbone used in the previous sections,
SR-UNet uses sparse convolutions to learn features on point clouds, discarding the
need of a sliding window for processing large-scale point clouds. For pre-training
data, we use ModelNet40 [57] as synthetic data and ScanNet [10] as real data.

Pre-training. As the original PointContrast [58] only supports ScanNet for
pre-training, here we adapt ModelNet40 to PointContrast by using surface point
cloud pairs, formed for every two continuous views, instead of the provided point
cloud pairs from ScanNet. As for our model, we use two view images when their
corresponding point cloud pairs have at least 30% overlapping. To define pixel-
point pairs, we reconstruct a point cloud from the first depth image in an image
pair, then project it to two color images to get pixel-point correspondences. During
training, we follow original setting of PointContrast [58]. For our pre-trained
model on ScanNet [10], we used the pre-trained ResNet50 [22] on ImageNet
provided by Pytorch[39] as the 2D feature extractor. Besides, all images are
resized to 240× 320 and we only use the point-wise knowledge transfer loss for
pre-training. We train the model with one GPU and four GPUs for ModelNet40
and ScanNet datasets, respectively.

Segmentation and detection results. We evaluate four pre-training config-
urations with the semantic segmentation task on two datasets S3DIS [5] and
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ScanNet [10]. We show the results in Table 10 (comparisons to PointContrast [58])
and Table 11 (comparisons to DepthContrast [62]). In Table 10, on both datasets,
the performance gap between our models pre-trained on synthetic and real data
is small. When testing on S3DIS, our pre-trained network on ModelNet even
provides a slightly better performance compared to the pre-trained model on
ScanNet on Acc. metric, and it offers 2% increase when compared with the
PointContrast counterpart on both Acc. and IoU metric. In Table 11, we also

Dataset
Task

(Metric)
Random DepthContrast [62] Ours

ModelNet
Ours

ScanNet

S3DIS (Area 5) sem. seg. (Acc) 70.9 72.1 +1.2 75.1 +4.2 74.5 +3.6
S3DIS (Area 5) sem. seg. (IoU) 64.0 64.8 +0.8 66.8 +2.8 66.5 +2.5

ScanNet sem. seg. (Acc) 77.2 77.6 +0.4 77.4 +0.2 78.3 +1.1
ScanNet sem. seg. (IoU) 69.1 69.9 +0.8 69.2 +0.1 70.7 +1.6

Table 11: Comparison to DepthContrast [62] on the semantic segmentation task
on S3DIS dataset [5] and ScanNet dataset [10]. The subscript indicates the
performance difference compared to the Random case.

compare with DepthContrast on semantic segmentation task. For S3DIS, our
pre-trained models on both synthetic and real data achieve better performance
approximately 2% on IoU and 4% on Acc. For ScanNet, our pre-trained model
on synthetic data outperforms the random setting but is slightly less effective
than DepthContrast. However, our pre-trained model on real data outperforms
both random and DepthContrast initialization.

We also perform comparison on the 3D object detection task on the ScanNet
dataset [10] and SUN RGB-D dataset [50]. Following [58], we replace original
PointNet++ [44] backbone of VoteNet [42] by SR-UNet [9]. The results are also
shown in Table 10. As can be seen, our method outperforms PointContrast when
pre-training on the same dataset. When using synthetic data, our model can
obtain two points higher in mAP50 compared with the PointContrast counterpart.
When using real data, the mAP scores increase slightly and achieve state-of-the-
art performance.

5 Conclusion

We propose a self-supervised learning method based on multi-view rendering to
pre-train 3D point cloud neural networks. Our self-supervision with multi-view
rendering on global and local loss functions yield state-of-the-art performance on
several downstream tasks including object classification, semantic segmentation
and object detection. Our pre-training method works well on both synthetic and
real-world data; it also proves the effectiveness of pre-training on synthetic data
like ModelNet40 for downstream tasks with real data like semantic segmentation
and 3D object detection.
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Supplementary Material

In this document, we provide more details for our proposed method. Firstly,
we present the complete experiment of using different rendering styles, includ-
ing position encoding, silhouette, and shading for both PointNet and DGCNN
(Section A). We also include additional results for rest of object classification
task with PointNet backbone(Section B.1), 6-fold cross validation results for the
semantic segmentation task on S3DIS dataset (Section B.3). Secondly, we also
report the performance of training with limited data on both ModelNet40 and
ScanObjectNN (Section C). Finally, we report detail settings, runtime statistics
and more insights into the proposed method by analyzing the t-SNE embedding
and the critical

A Evaluation of multi-view rendering

We report the performance of PointNet [43] and DGCNN [55] on different
rendering styles in Table 12. It can be seen that shaded images yield slightly
higher performance than other renderings on both datasets. However, other
rendering styles such as position encoding (RGB) and silhouette still produce
competitive results. It implies that in cases where only point clouds are available
for pre-training, RGB and silhouette rendering can be used while not causing a
significant performance difference compared to mesh-based rendering.

PointNet DGCNN

RGB Silhouette Shading RGB Silhouette Shading

ModelNet40 [57] 88.3 ± 0.2 88.9 ± 0.2 88.9 ± 0.1 92.5 ± 0.2 92.5 ± 0.2 92.5 ± 0.1
ScanObjectNN [53] 79.7 ± 0.5 78.8 ± 0.6 79.3 ± 0.3 82.8 ± 0.5 82.0 ± 0.2 82.8 ± 1.0
ScanObjectNN BG [53] 75.1 ± 0.3 75.6 ± 0.4 75.7 ± 0.5 81.0 ± 0.2 81.8 ± 0.9 82.6 ± 0.7

Table 12: Effect of different rendering techniques to our pre-training

B Details of downstream tasks

B.1 Object classification

Similar to the comparison with the DGCNN backbone in the main paper, we
provide comparisons with the PointNet backbone. The results are shown in Table
13. As can be seen, our method outperforms random inititalization as well as
other pre-training methods, including Jigsaw [46], OcCo [54], and CM [29].
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PointNet

Random Jigsaw OcCo CM Ours

MN40 [57] 88.9±0.0 89.2±0.0 89.2±0.1 89.1±0.1 89.5±0.2
SO [53] 78.2±0.1 79.4±0.1 79.5±0.1 79.3±0.5 80.5±0.4
SO BG [53] 76.4±0.0 76.4±0.4 76.4±0.1 74.1±0.2 78.5±0.5

Table 13: Comparison among random, Jigsaw [46], OcCo [54], CM [29], and our
initialization to the object classification downstream task. We reported the mean
and standard deviation at the best epoch over three runs.

PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

mAcc 83.9 82.5 83.6 85.0 86.8 86.8 87.0 87.0
mIoU 43.6 43.6 44.5 46.7 49.3 48.2 49.5 49.9

Table 14: Fold 1 of overall point accuracy (mAcc) and mean Intersection-over-
Union (mIoU) on the S3DIS (Stanford Area 5 Test) [5]

B.2 A note on the OcCo baseline

It can be seen that in our paper, some experiment results of OcCo are lower
than the results reported by its original paper. We did our best to reproduce the
results of OcCo but unfortunately, we were not able to match the results with the
original paper. We confirmed this issue by using the docker image provided by
the OcCo authors and rerun the experiments, but still could not reproduce the
results exactly as in the OcCo paper. For fair comparison and reproducibility, we
decided to report the results based on our own runs. Additionally, the pre-training
time of OcCo is about 7x slower than our method.

B.3 Semantic segmentation

In additional to the Area-5 results reported in the main paper, we further report
the results of 6-fold cross-validation over the 6 areas on the S3DIS dataset. For
completeness, all results are shown in Table 14 (Area-5), and Table 15 (6 folds).
In both cases, we can see that models initialized by our method outperform
others in both PointNet [43] and DGCNN [55].

B.4 Details of PointContrast baseline

Semantic segmentation: We evaluate on two datasets S3DIS [5] and ScanNet
[10]. We use SGD optimizer with the initial learning rate 0.1 and 0.8 for S3DIS
and ScanNet respectively. We use PolynomialLR scheduler with a power factor
0.9.For ScanNet dataset, we train the model with 15000 iterations and batch size
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PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

mAcc 82.8 82.8 82.7 83.2 86.9 86.6 87.1 87.5
mIoU 50.6 51.4 51.1 52.1 58.4 58.1 58.7 59.0

Table 15: Average of 6-fold cross validation of overall point accuracy (mAcc) and
mean Intersection-over-Union (mIoU) on the S3DIS [5]

48 on 4 GPUs. For S3DIS dataset, we train the model with 20000 iterations and
batch size 32 on 1 GPU.

Object detection: For object detection task, in the training we follow the
configuration of PointContrast [58]. We use Adam optimizer with the initial
learning rate 0.001 and train the model on 1 GPU with 180 epochs. Specifically,
we train the model with batch size 32 and 64 for ScanNet and SUN RGB-D,
respectively. Before voxelization, we sample 40000 and 20000 points from original
point of ScanNet and SUN RGB-D and the voxel sizes are 2.5 cm and 5 cm
respectively.

ModelNet40 [57] PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

5% 73.2 73.8 73.9 77.9 82.0 82.1 82.3 84.9
10% 75.2 77.3 75.6 79.0 84.7 84.1 84.9 86.6
20% 81.3 82.9 81.6 84.6 89.4 89.2 89.1 90.2
50% 86.6 86.5 87.1 87.6 91.6 91.8 91.7 92.4
70 % 88.3 88.4 88.4 88.7 92.3 92.4 92.5 92.8

ScanObjectNN [53] PointNet DGCNN

Random Jigsaw OcCo Ours Random Jigsaw OcCo Ours

5% 52.1 51.8 53.7 60.8 48.3 46.7 51.4 60.9
10% 63.0 62.3 62.5 69.0 58.7 58.0 61.5 69.5
20% 69.0 68.5 67.1 72.2 69.8 68.7 71.6 74.7
50% 73.7 75.1 72.6 77.0 76.3 77.1 78.0 81.6
80 % 76.1 77.9 76.7 78.4 79.9 78.1 80.8 82.1

Table 16: Performance of the object classification task trained with fewer data
on ModelNet40 [57] and ScanObjectNN [53]. Our method has significant gains
compared to other initialization methods. We reported the mean at the best
epoch over three runs
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(a) Jigsaw [46] on PointNet
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(b) OcCo [54] on PointNet
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(c) Ours on PointNet
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(d) Jigsaw [46] on DGCNN
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(e) OcCo [54] on DGCNN
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(f) Ours on DGCNN

Fig. 4: t-SNE visualization of the object embedding of the test data of ModelNet40.
Our method has better cluster quality measured by NMI and purity.

Fig. 5: Critical and upper-bound point visualizations for models pretrained with
Jigsaw, OcCo, and our method.
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C Training with limited data

To prove the effectiveness of our pre-training, we supervise the downstream
task with fewer data when the network is pre-trained and compare to other
initializations. We show both results on ModelNet40 (also reported in the paper)
and ScanObjectNN. In this experiment, we decrease the number of training
samples to 5%, 10%, 20%, 50%, and 80%, and evaluate the model on the original
test set. The results are reported in Table 16, which shows that the performance
of our method outperforms Random, Jigsaw [46], and OcCo [54] in most cases
except DGCNN on 80% of ScanObjectNN.

D Visualization

D.1 t-SNE embedding

We further visualize learned object embeddings of the ModelNet40 test set by
using t-SNE with perplexity 15 and 1000 iterations in Figure 4. We observe that
the embeddings learned from using our initialization for different classes are well
clustered than those acquired with OcCo and Jigsaw initialization indicated by
normalized mutual information (NMI) and purity [36].

D.2 Critical point sets

We then visualize the critical point sets and upper-bound shapes by following
PointNet [43] for selected samples in Figure 5. To recap, a critical point set is
a set of points that contribute directly to the last max pooled feature, i.e., the
global feature. Perturbing the critical point set can lead to changes in the global
features and thus classification results. The upper-bound shape is the largest
possible point set that does not directly affect the global feature of the original
shape. From Figure 5, we found that in our method, the critical point sets can
represent the object skeleton more faithfully (e.g., the toilet example) than other
methods. Jigsaw sometimes causes sparse critical points, and OcCo tends to
discard points along thin geometric features. We also found that the upper-bound
shape of our initialization appears thicker than that of Jigsaw and OcCo, which
we hypothesize that our model can be more robust to point perturbations than
Jigsaw and OcCo.

E Running time

Following the request, we provide the pre-training time of three methods on an
NVIDIA Tesla V100 GPU in Table 17. As can be seen, the pre-training time
of our method is slightly longer than Jigsaw and significantly shorter than OcCo.
Despite such, our method achieves better performance than the others.

Additionally, we provide more statistics of our training process. Specifically,
it takes 2.3, 2.4, and 6.2 hours to render RGB, silhouette, and shaded images,
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Jigsaw OcCo Ours

PointNet 2.6 24.8 3.8
DGCNN 4.1 35.1 5.7

Table 17: Pre-training time of three methods (hours).

respectively. For the 2D self-supervision, we train the model for 80 hours on an
NVIDIA Tesla V100 GPU. Knowledge distillation takes 3.8, 5.7, 26 and 62 hours
of training for PointNet [43], DGCNN [55], SR-UNet on ModelNet40 [57] and
SR-UNet on ScanNet [10], respectively. As for downstream-task training, the
PointNet classification model takes 18.5 hours, and the DGCNN classification
model takes 75.0 hours. The segmentation models require longer training time,
with 32.0 hours and 90.0 hours for PointNet and DGCNN backbone, respectively.
For SR-UNet backbone[9], in semantic segmentation task, it consumes 32 and 22
hours for S3DIS [5] and ScanNet [10], respectively. For object detection task on
ScanNet [10], it takes 8.5 hours.

F Future Work

Our method is not without limitations. First, our image encoder is trained from
scratch without leveraging existing popular feature extractors such as VGG [49] or
ResNet [22]. Further utilizing such pre-trained networks on natural images could
potentially improve the performance of the downstream tasks, which could be
interesting for future work. Second, the multi-view rendering used in our method
could potentially be further explored. While we attempted with position encoding,
silhouette, and shaded rendering, there are many other rendering styles that
could be experimented, e.g., rendering with colors and textures when applicable,
rendering with depth completion, etc. Applying advanced techniques to enhance
multi-view rendering is thus a good avenue for future research.
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