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Figure 1: Our post-correction result for a state-of-the-art image denoiser (AFGSA [Yu et al. 2021]). Our self-supervised opti-

mization uses only test images, and it visually and numerically improves the existing learning-based technique by restoring

the fine details. We used the relative L2 (relL2) [Rousselle et al. 2011] as an error metric.

ABSTRACT

Using a network trained by a large dataset is becoming popular for

denoising Monte Carlo rendering. Such a denoising approach based

on supervised learning is currently considered the best approach

in terms of quality. Nevertheless, this approach may fail when

the image to be rendered (i.e., the test data) has very different

characteristics than the images included in the training dataset. A

pre-trained network may not properly denoise such an image since

it is unseen data from a supervised learning perspective. To address

this fundamental issue, we introduce a post-processing network

that improves the performance of supervised learning denoisers.

The key idea behind our approach is to train this post-processing

network with self-supervised learning. In contrast to supervised

learning, our self-supervised model does not need a reference image

in its training process. We can thus use a noisy test image and self-

correct the model on the fly to improve denoising performance.

Our main contribution is a self-supervised loss that can guide the

post-correction network to optimize its parameters without relying

on the reference. Our work is the first to apply this self-supervised

learning concept in denoising Monte Carlo rendered estimates.

We demonstrate that our post-correction framework can boost
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supervised denoising via our self-supervised optimization. Our

implementation is available at https://github.com/CGLab-GIST/self-

supervised-post-corr.
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1 INTRODUCTION

Monte Carlo (MC) image denoising is a general approach that can ef-

fectively reduce the variance of noisy pixel estimates [Zwicker et al.

2015]. A traditional denoiser takes path-traced images as input and

produces more accurate pixel estimates by replacing a noisy pixel

estimate with a weighted sum of neighboring pixels [Bitterli et al.

2016]. Sophisticated neural networks for image denoising [Bako

et al. 2017; Xu et al. 2019; Yu et al. 2021] have been actively studied

and demonstrated effective at denoising MC estimates.

A widely adopted approach for optimizing learning-based de-

noisers is to pretrain a neural network with a training dataset and

then use the trained network to infer pixel estimates at runtime.

https://doi.org/10.1145/3528233.3530730
https://github.com/CGLab-GIST/self-supervised-post-corr
https://github.com/CGLab-GIST/self-supervised-post-corr
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This approach is said to be made robust by carefully selecting train-

ing images that are similar to the test images. However, it is not

practical to assume that the training dataset covers all the possible

test images (i.e., a noisy input image at runtime) since rendered

images can vary significantly according to various scene configura-

tions such as geometries, materials, and illumination. As a result, it

is not uncommon to see that a pre-trained denoiser fails to denoise

a test image in practice (e.g., Fig. 1).

One can also consider correcting (potentially non-ideal) visual

artifacts of denoised estimates as a post-process. Back et al. [2020]

presented such a post-processing model that corrects a denoised

image with another pre-trained neural network. While this post-

processing model can remove visual artifacts from denoising, it still

shares the same problem as supervised learning that we need to

train this model with a dataset that contains denoised-reference

image pairs.

To address this fundamental limitation of supervised learning,

we introduce a combination of two different learning mechanisms,

self-supervised correction for supervised learning, in the context

of MC denoising. We propose a self-supervised post-correction

network trained only with test images on the fly. The training data

for the supervised denoiser and our self-supervised learning are

mutually exclusive, and thus both techniques are complementary

from an optimization perspective. Our main technical contributions

are as follows.

• We propose a new self-supervised loss that enables us to opti-

mize a post-correction framework using only a test image pair,

i.e., a noisy image and its denoised output (Sec. 4.1).

• We present a practical implementation for this post-correction

network where the network can be effectively optimized using

our self-supervised loss (Sec. 4.2).

We demonstrate that our post-correction can improve state-of-

the-art learning-based denoising techniques, especially when the

denoisers receive complex test images with detailed high-frequency

information, as shown in Fig. 1.

2 RELATEDWORK

Pretraining-based optimization. Designing an effective denoising

network has been actively explored since it allows for modeling a

complex non-linear relationship from noisy input images to their

ground truth. Kalantari et al. [2015] exploited a multilayer percep-

tron to adapt the parameters of a cross-bilateral filter per pixel.

Chaitanya et al. [2017] used a recurrent neural network that re-

duces temporal noise in animation. Bako et al. [2017] employed

a convolutional neural network that infers denoising weights per

pixel, which was later extended for an animated sequence [Vogels

et al. 2018]. Gharbi et al. [2019] devised a framework that takes

radiance samples as input, and Xu et al. [2019] introduced a gener-

ative adversarial network for denoising. Kettunen et al. [2019] and

Guo et al. [2019] presented specialized neural frameworks that take

image gradients as well as primal pixel colors for gradient-domain

renderings [Hua et al. 2019; Kettunen et al. 2015; Lehtinen et al.

2013]. Recently, Back et al. [2020] proposed a post-reconstruction

network that boosts denoising results, and Yu et al. [2021] exploited

the self-attention mechanism for improving denoising quality by

selecting suitable neighboring pixels.

These methods use different neural architectures for denoising,

but the common to all the techniques is that they pretrain the

networks using a dataset that does not include test images available

only for their inference. We present a post-correction framework

that optimizes our neural network by taking their unseen data (i.e.,

test images) into account.

MSE-based optimization. A conventional approach for optimiz-

ing image denoising is to adjust denoising parameters per pixel. Er-

rors can vary significantly across pixels, especially for MC rendered

images with heterogeneous variances. Overbeck et al. [2009] trans-

formed a rendered image via wavelets and truncated wavelet coeffi-

cients using the variance of pixel colors, and Sen and Darabi [2012]

exploited mutual information to estimate optimal parameters for a

cross-bilateral filter. Li et al. [2012] exploited Stein’s unbiased risk

estimator, which produces unbiased estimates for denoising errors,

and optimized cross-bilateral and non-local means filters. Rous-

selle et al. [2012] proposed a dual-buffer approach for estimating

denoising errors of non-local means filters, and this approach was

exploited later for cross non-local means [Rousselle et al. 2013] and

regression-based denoising [Bitterli et al. 2016]. Moon et al. [2014;

2016] estimated squared bias and variance of the denoising using

local regression and adapted their denoising kernels across pix-

els. Zheng et al. [2021] formulated an estimate to blend multiple

denoised images and predicted optimal per-pixel weights for the

denoised images. A comprehensive overview of such classical opti-

mization for image denoising is available [Zwicker et al. 2015].

A vital benefit of this conventional approach is that a denoising

process can be specialized for each input image since their parame-

ters are optimized using the test image to be rendered at runtime. It

inspires us to design our post-correction technique that enhances

denoised estimates via a deep neural network trained using test in-

put. While our method exploits a similar optimization scheme (i.e.,

MSE-based optimization using test images), the main distinction is

that we train a deep neural network, unlike the classical methods.

Self-supervised learning in other problems. Training a neural net-

work using only test images has been actively studied for computer

vision problems such as image restoration [Heckel and Hand 2019;

Quan et al. 2020; Ulyanov et al. 2018], image decomposition [Gan-

delsman et al. 2019], and image fusion [Uezato et al. 2020]. In com-

puter graphics, training a neural network that adjusts sampling

density for importance sampling without pretraining was explored

in [Müller et al. 2019; Zheng and Zwicker 2019]. We exploit self-

supervised learning but apply this learning mechanism for MC

denoising and propose a specialized neural network that can cor-

rect denoised estimates.

3 BACKGROUND AND MOTIVATION

We provide an overview of the existing post-correction technique

[Back et al. 2020] that enhances denoised estimates using a pre-

trained neural network. We then motivate our self-supervised learn-

ing that can perform such a correction without any pretraining.

Supervised post-correction for image denoising. The deep com-

biner (DC) [Back et al. 2020] combines independent and correlated

pixel estimates y and z to produce an improved image µ̂ that esti-

mates the ground truth µ. While the DC is not limited to denoisers,
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(c) DC + Ours (d) Reference(b) AFGSA + DC(a) AFGSA, 64 spp
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Figure 2: Our post-correction results for the supervised deep

combiner (DC) with a denoiser, AFGSA. The DC has been

trained without the denoising results of AFGSA, and it fails

to boost the unseen denoiser. Our technique (c) takes the DC

result (b) as input and restores the lost details.

one can use a noisy image as the independent input y to the DC,

and the corresponding denoised image by a denoiser as the corre-

lated input z to the DC, to remove artifacts due to denoising. They

consider the following statistical models for the two inputs (y and

z);

yc = µc + ec , (1)

zc − zi = µc − µi + eci , (2)

where yc , zc and µc are the c-th pixel colors in y, z and µ, and ec
and eci are the error terms. The expectations of the error terms (ec
and eci ) assume to be zero vectors. Similarly, zi and µi are the i-th
pixel colors. We shall treat the pixel colors as 3 × 1 vectors.

Given the models, a combination function fc (y, z) at pixel c is
defined as

fc (y, z) =
1∑

i ∈Ωcwi

{ ∑
i ∈Ωc

wiyi +
∑
i ∈Ωc

wi (zc − zi )

}
, (3)

which produces the pixel estimate µ̂c = fc (y, z) as a weighted

average of independent colors yi and correlated color differences

(zc − zi ) within a local window Ωc centered at pixel c .
This post-correction process (Eq. 3) is controlled by the combi-

nation weightswi (wi > 0) that should be adjusted per pixel since

the variances of yi and zc − zi can vary locally. To this end, the DC

pretrains a neural network that produces optimal per-pixel weights

that minimize a supervised loss:

L(µ̂c ) =
| |µ̂c − µc | |

2

µ̄2

c + 0.01

, (4)

which uses a relative L2 error [Rousselle et al. 2011] that penalizes

the errors in bright areas by leveraging the intensity µ̄c (i.e., the

average of the µc ) of the ground truth color µc . This supervised
loss relies on the ground truth µc for pixel c , which is replaced

by a reference value rendered with a large number of samples in

practice.

This process is a form of supervised learning, which is possible

only when one can access the reference values. Therefore, it can be

conducted only for pretraining a neural network using a training

dataset including the references. The DC is thus pretrained for a

specific set of scenes, images, and denoisers (to produce z given y)
as a supervised learning model.

On the contrary, our self-supervised learning trains a neural

network without relying on the µ. Therefore, our model can be

trained on the fly for each input y and z at runtime without needing

to know the corresponding µ. The key technical problem is that

we need to design a self-supervised loss that effectively optimizes

a neural network using only the imperfect input data (e.g., y and z
for the post-correction scenario).

Problem statement. Pretraining a post-correction network by

supervised learning can be ideal when a training dataset effectively

covers all the possible runtime scenarios. Unfortunately, it is not

practical to assume that we can prepare such an ideal training set

since the test data (i.e., an image we want to render at runtime) is

commonly considered unseen. Fig. 2 shows such failure cases where

post-correction actually deteriorates the correlated input generated

by an untrained denoiser. It motivates our self-supervised learning

that is free from this fundamental issue of supervised learning since

we train the network on the fly at runtime. This flexibility allows

us to even take the output of supervised post-correction as our input
to further improve their results, as shown in Fig. 2.

4 SELF-SUPERVISED POST-CORRECTION

We propose a new self-supervised framework (Fig. 3) that post-

corrects the results of a supervised learning model using their input

and output without any pretraining. To fulfill this objective, we

derive a mean squared error (MSE) based self-supervised loss in

Sec. 4.1 and present a post-correction neural network guided by

the loss in Sec. 4.2.

4.1 Self-Supervised Loss

Our goal is to have a self-supervised model that guides a post-

correction network at runtime. We cannot use the actual error

| |µ̂c − µc | |
2
since it can be obtained only when we can access the

ground truth µc . We instead estimate the expectation of the actual

error E | |µ̂c −µc | |
2
using only the test input analogously in classical

denoisers [Li et al. 2012; Rousselle et al. 2012]. We adopt the dual-

buffer scheme [Bitterli et al. 2016] that splits MC pixel estimates into

two sub-buffers and estimates denoising errors for a noisy buffer

using another noisy buffer, which can be considered a two-fold

cross-validation. Lehtinen et al. [2018] also used the dual-buffer

scheme to optimize a neural network mainly for generic image

denoising. Unlike Lehtinen et al., we propose to optimize a network

on the fly. As a result, our runtime optimization can complement

the pretraining-based denoising.

Specifically, we take dual-buffered pairs (ya , yb ) and (za , zb ).
Splitting noisy estimates y into two sub-buffers is trivial [Rousselle

et al. 2012], and the denoised estimates za and zb can be generated

by applying a denoiser to ya and yb , respectively. The resulting
pair (ya , za ) is independent of another one (yb , zb ).

Given those sub-buffered inputs, let us apply post correction to

each image pair independently to obtain estimates µ̂a and µ̂b . We

define a supervised loss that optimizes this correction process for
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Figure 3: We split an image pair (noisy-denoised images) together with auxiliary features into dual buffers (a and b), and

each buffer is fed into a convolutional neural network (CNN) in turn so that the parameters of our post-correction function

(β , γ and τ in Eqs. 10 and 11) can be determined. We generate two output images (µ̂a and µ̂b ) from the dual-buffered inputs

independently, and this correction process is optimized using our self-supervised loss (Eq. 9) at runtime.

the first pair as

L(µ̂ac ) =
E | |µ̂ac − µc | |

2

µ̄2

c + 0.01

. (5)

To derive a self-supervised loss
ˆL(µ̂ac ), we can estimate the un-

known E | |µ̂ac − µc | |
2
by an unbiased estimate:

E | |µ̂ac − µc | |
2 ≈ ||µ̂ac − ybc | |

2 − 1T σ̂ 2(ybc ), (6)

where σ̂ 2(ybc ) is an unbiased estimate of the variance σ 2(ybc ), i.e.,
the sample variance of the pixel color ybc , and 1 is a vector of ones
of size 3 × 1. Please see the supplementary report for a detailed

derivation. By plugging the unbiased estimate of the MSE (Eq. 6)

into L(µ̂ac ) (Eq. 5), the loss for µ̂
a
c is approximated as

L(µ̂ac ) ≈
||µ̂ac − ybc | |2 − 1T σ̂ 2(ybc )

µ̄2

c + 0.01

. (7)

This approximate loss still depends on the reference value, i.e., the

µ̄c in the denominator, and thus the unknown should be estimated.

For the estimation, it is desirable to choose a value that is statistically

independent of the output estimate µ̂ac since it allows us to ignore

the (noisy) variance-related term 1T σ̂ 2(ybc )/(µ̄2

c + 0.01). Note that

this omission does not affect an optimization when its gradient

with respect to the output estimate µ̂ac is zero.

In this respect, we have two intuitive candidates ȳbc and z̄bc , i.e.,

the intensities of ybc and zbc , for the unknown µ̄c . In practice, the

biased value z̄bc is often more accurate than the unbiased one ȳbc
since a denoiser often reduces the error of their noisy input ybc
drastically. Hence, we choose the z̄bc for the denominator (Eq. 7)

and result in our self-supervised loss for µ̂ac :

ˆL(µ̂ac ) =
| |µ̂ac − ybc | |2

(z̄bc )
2 + 0.01

. (8)

The loss
ˆL(µ̂bc ) for the other buffer µ̂

b
c can be derived in the same

manner. This self-supervised loss allows us to optimize the param-

eters θ of a neural network that produces post-corrected estimates

µ̂a and µ̂b , and it can be represented as

θ∗ = argmin

θ

1

3N

N∑
c=1

0.5
(

ˆL(µ̂ac ) +
ˆL(µ̂bc )

)
, (9)

where N is the number of pixels for the input images.

(b) AMCD + DC
(using our loss)

(a) AMCD
(64 spp)

(c) AMCD + Ours (d) Reference

relL2 0.034826 relL2 0.013846 relL2 0.011142 64K spp

relL2 0.001973 relL2 0.004506 relL2 0.001416 64K spp
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Figure 4: Comparisons between post-correction neural net-

works of DC (b) and our technique (c) for a recent de-

noiser, AMCD (a). Both networks are optimized using our

self-supervised loss, and we generate their results ((b) and

(c)) using 20 epochs. Our lightweight network, which has

79.5× smaller parameters than the DC, is robust against over-

fitting (see (e) and (f)), and it leads to more stable post-

correction results.

4.2 A Practical Post-Correction Neural

Network

We explain a practical implementation of the post-correction neural

network. A straightforward option is to directly employ an existing

model [Back et al. 2020] while replacing its supervised loss with our

self-supervised loss. However, we found that this choice results in

overfitting to the noise in the input y since the training data (only

a test image pair) is insufficient for training the complex network

with millions of trainable parameters (see Fig. 4). Moreover, training

such a complex neural network at runtime can be expensive (e.g.,

41.9 seconds for the example results in Fig. 4).
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Figure 5: Equal-time comparisons of the denoising methods with and without our post-correction. Our self-supervised opti-

mization helps the supervised-learning methods improve denoising quality when they fail to preserve fine details.

We propose to use a lightweight framework (Fig. 3) that re-

lies on the same convolutional neural network of the previous

method [Back et al. 2020] but with much smaller parameters. Our

network size is only 0.02Mwhich is 79.5× smaller than the original

one with 1.59M [Back et al. 2020]. As an additional optimization

to the baseline, we reformulate the existing localized combination

(Eq. 3) into

дc (y, z)=
∑
i∈Ωcwi

{
yi +βzc ◦(zc −zi )+β

ρ
c ◦

(
ρc −ρ i

)
+βnc ◦(nc −ni )

}∑
i∈Ωcwi

(10)

where the symbol ◦ is the element-wise product. Note that we

replace zc − zi in the original combination (Eq. 3) with βzc ◦ (zc −
zi )+β

ρ
c ◦(ρc −ρi )+β

n
c ◦(nc −ni ) using albedo and normal buffers

(ρ and n, respectively). Specifically, ρc and nc are the albedo and

normal values of size 3 × 1 at pixel c and βzc , β
ρ
c , and βnc of size

3× 1 are the scale parameters that control a relative importance for

(zc − zi ), (ρc − ρi ) and (nc − ni ).
We set βzc to one vector and the others (β

ρ
c and βnc ) to zero

vectors, this formulation is equivalent to the previous combination

kernel (Eq. 3), derived by assuming that E[eci ] is zero vector. In

practice, the assumption can be invalid since the zc and zi are
biased pixel estimates generated by a denoiser. We also exploit the

rendering-specific information (e.g., albedo and normal values) for

compensating the approximation error, and this bias compensation

is controlled by the network through the parameters (βzc , β
ρ
c , and

βnc ).

We can define the weightwi (in Eq. 10) in a cross-bilateral form:

wi =


exp

(
−
loge (1 + | |yc − yi | |2)

(γ yc )2 + ϵ
−

loge (1 + | |zc − zi | |2)
(γ zc )2 + ϵ

)
× exp

(
−
| |ρc − ρ i | |

2

(γ ρc )2 + ϵ
−

| |nc − ni | |2

(γ nc )2 + ϵ
−

(vc − vi )2

(γvc )2 + ϵ

)
if i , c,

τc otherwise.

(11)

γ
y
c , γ

z
c , γ

ρ
c , γ

n
c and γvc are the bandwidth parameters for the image

pair (y and z) and auxiliary features including albedo ρ, normal

n and visibility buffers v, respectively. We found that taking a

logarithm for the squared color differences is needed for a stable

learning since the colors have a high dynamic range unlike the

other features. Note that we treat the weightwc = τc for the center
pixel c separately in Eq. 11 to avoid that the center weight becomes

always one by the cross-bilateral weighting like as [Işık et al. 2021].

The ϵ is set to 0.0001 to avoid the division by zero.

As a result, the post-correction function дc (y, z) (Eq. 10) requires
a set of the scale parameters (βc ≡ {βzc , β

ρ
c , β

n
c }) and bandwidth

parameters (γc ≡ {γ
y
c ,γ

z
c ,γ

ρ
c ,γ

n
c ,γ

v
c }) and center weight τc per

pixel c . The per-pixel parameters are generated by a neural net-

work (Fig. 3) with trainable parameters θ , analogously as in some

prior work [Bako et al. 2017; Kalantari et al. 2015]. We train the

network parameters using our self-supervised learning (Eq. 9) using

the dual-buffered input pairs ((ya , za ) and (yb , zb ) in Sec. 4.1). As

we employ the auxiliary buffers (ρ, n, and v), we also split those

buffers and feed those into the network. Once the optimal network



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon

(a) Denoiser + DC (b) DC + Ours (c) Reference

64 spp, 29.98 m
relL2 0.009841

62 spp, 29.24 m
relL2 0.005625

16K sppHAIR

72 spp, 5.01 m
relL2 0.012641

68 spp, 4.96 m
relL2 0.009293

64K sppSANMIGUEL

74 spp, 1.44 m
relL2 0.017521

62 spp, 1.43 m
relL2 0.011327

64K sppDRAGON

Figure 6: Same-time comparisons between DC for denoiser

(i.e., AFGSA) and our technique for the DC. Our run-

time optimization enables us to improve the supervised

technique (DC) by correcting their outputs through our

post-correction lightweight neural network trained by self-

supervised learning.

parameters θ∗ are estimated, we infer the two output estimates by

the function дc (y = ya , z = za ) and дc (y = yb , z = zb ) using the

dual buffers. Our final estimates are computed as the average of

the two estimates. Fig. 4 shows that our optimization makes the

self-supervised learning robust against overfitting and results in

more accurate post-correction results than the baseline (DC) driven

by the self-supervised loss.

Network and training details. Our network (Fig. 3) consists of 9

layers, each of which uses convolutional filters with 3 × 3 kernel

size. The last layer uses 15 filters (i.e., the number of the parame-

ters for βc , γc and τc ), and the other layers use 16 filters. For the

activation function in the last layer, we use the tanh function for

βc and the softplus for γc and τc . We use the ReLU for the other

layers. We have implemented our self-supervised framework us-

ing Tensorflow [Abadi et al. 2015]. We have extracted 128 × 128

patches from the input color and auxiliary images for our runtime

training and trained the network for 20 epochs using the Adam

optimizer [Kingma and Ba 2014]. We have set the learning rate to

0.01

√
1

3N
∑N
c=1

1T σ̂ 2(yc ) where σ̂ 2(yc ) is the estimated variance

using dual-buffers (i.e., σ̂ 2(yc )= (yac −ybc ) ◦ (yac −ybc )/4). The batch

size has been set to 16, and we have used Xavier uniform initial-

izer [Glorot and Bengio 2010]. We have set the window size |Ωc |

to 19 × 19.

5 RESULTS AND DISCUSSION

We applied our self-supervised post-correction to the state-of-the-

art denoising methods, KPCN [Bako et al. 2017], AMCD [Xu et al.

2019], and AFGSA [Yu et al. 2021]. We tested the pre-trained models

released by the authors to generate their denoised estimates. We

compared our technique also with the supervised deep combiner

(a) BATHROOM

re
la

tiv
e 

L2

(b) HAIR

(c) DRAGON (d) SANMIGUEL
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L2
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Figure 7: Numerical convergence plots (in log-log scale) for

denoising techniques with and without our post-correction.

(a) PT (32 spp) (b) AFGSA (c) AFGSA + Ours (d) Reference

64K spprelL2 0.112400 relL2 0.002109 relL2 0.002139

16K spprelL2 0.062694 relL2 0.009440 relL2 0.007756

Figure 8: Failure cases occur when the denoised estimates (b)

are post-corrected using our self-supervised loss that relies

on the noisy input (a).

(DC) [Back et al. 2020]. We have fully retrained the DC using 800

training images generated using eight public scenes [Bitterli 2016]

for a fairer comparison. We used the PBRT renderer [Pharr et al.

2016] to generate test images, and all the tests were conducted

using an Intel Xeon CPU E5-2687W and NVIDIA GeForce RTX

3090 GPU. We used the four test scenes (bathroom, hair, dragon,

and sanmiguel).

Equal-time comparisons. Fig. 5 compares denoised estimates and

their post-corrected results using our technique. The reported times

for our method include the self-supervised learning times as we

train a neural network on the fly. As shown in the figure, the de-

noisers do not always show good denoising results for all the test

scenes. For example, KPCN produces relatively high-quality results

with preserved details for the dragon and sanmiguel but over-

blurs some details for the bathroom and hair. AFGSA preserves

the high-frequency information for the bathroom but produces

over-smoothed artifacts for the other scenes, similarly to AMCD.

It indicates that a learning-based denoiser, even with extensive

pre-training, would not be ideal for all the possible scenarios since
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the test images at runtime can be arbitrarily different from the

training images in practice. Our technique uses unseen data (i.e.,

the test images) for learning a post-correction network on the fly

and improves the denoising results when supervised techniques

fail (e.g., over-blurred artifacts).

As shown in Fig. 6, the supervised post-correction (DC) does

not effectively restore lost high-frequency details. Because of the

flexibility of self-supervised learning, our framework can take the

post-corrected estimates from the DC as input to our method and

further corrects the results. It demonstrates that our post-correction

using self-supervised learning can complement different kinds of

supervised techniques.

Numerical convergence. Fig. 7 shows numerical convergences of

the tested methods. Our method helps the denoising techniques to

produce more numerically accurate results, primarily when these

methods fail. For example, AMCD and AFGSA do not effectively

reduce their errors by increasing the sample size. The figure shows

that our self-supervised gain becomes more significant for the two

methods with large sample counts. Technically, the self-supervised

loss can become more accurate with a larger sample size since it

relies on noisy unbiased estimates (e.g., ybc in Eq. 7).

Ablation studies for our combination function. We reformulate the

previous combination (Eq. 3) into a new localized function (Eq. 10)

that explicitly exploits rendering-specific features (e.g., albedo and

normal values) for bias compensation. We infer the combination

weightswi using a cross-bilateral function (Eq. 11). Table 1 shows

the post-correction results of our self-supervised network with

and without the two adaptations (Eqs. 10 and 11). As shown in

Table 1, the cross-bilateral weighting (setting B and D in the table)

allows the self-supervised correction to be more accurate than those

without the weighting (setting A and C). Thanks to the additional

use of auxiliary features for bias compensation, our combination

(Eq. 10) with the cross-bilateral weighting (setting D) outperforms

the previous combination (Eq. 3) with the same weighting scheme

(setting B) except for a case (AFGSA for the dragon). We include

the post-corrected images of the different configurations in the

supplemental report.

Runtime overhead. Table 2 shows the breakdowns for the run-
time overhead, excluding the sampling times for generating the

noisy path-traced estimates. The denoising time for generating

the dual-buffered input depends on a chosen denoising technique.

On the other hand, the training and inference times (12.52 secs in

total) are only affected by the resolutions of the test images. This

computational overhead is non-negligible for a few sample counts.

However, since our training time does not depend on the sample

size, the overhead becomes minor and minor as the sample count

increases. As a result, our post-correction can be effective for offline

rendering scenarios where the sample count is moderate to large,

as shown in the equal-time comparisons (Fig. 5).

Limitations and future work. One limitation of our post-correction

framework is that the self-supervised loss is only an estimate of

the unknown supervised loss, and thus it contains its own noise

(mainly due to the use of unbiased but noisy estimates, e.g., ybc in

Eq. 7). The noisy self-supervised loss guides our post-correction

Table 1: Ablation studies for our self-supervised post-

correctionwith 128 spp.We show the relL2 errors of the origi-

nal combination (Eq. 3) and our revised combination (Eq. 10)

with and without the cross-bilateral weighting (Eq. 11).

Brown and cyan colors highlight the best and second-best

results.

Scenes Denoisers Setting A Setting B Setting C Setting D

bathroom

KPCN 0.002903 0.001015 0.002200 0.000991

AFGSA 0.002699 0.001127 0.001842 0.000942

hair

KPCN 0.004383 0.003899 0.004412 0.003429

AFGSA 0.004185 0.004005 0.004379 0.003713

dragon

KPCN 0.008340 0.008314 0.008217 0.007471

AFGSA 0.008223 0.007715 0.007863 0.007731

sanmiguel

KPCN 0.008211 0.006973 0.008577 0.006228

AFGSA 0.007512 0.006848 0.010412 0.006547

∗ Four settings with different design choices

A: original combination (Eq. 3)

B: original combination (Eq. 3) w/ cross-bilateral weighting (Eq. 11)

C: refined combination (Eq. 10)

D: refined combination (Eq. 10) w/ cross-bilateral weighting (Eq. 11)

Table 2: Runtime breakdowns (in secs) for a test image of

size 1K×1K.

Step KPCN + Ours AMCD + Ours AFGSA + Ours

Buffer splitting 3.02 0.04 0.02

Post-correction 12.52 12.52 12.52

Total 15.54 12.56 12.54

Table 3: Our results for the sanmiguel scene (in Fig. 5),

where we change the viewing direction over five frames. We

use 64 spp for all the frames. We train our neural network

for the current frame using the trained network from the

previous frame (with reuse), and it produces more accurate

results than using the random initialization per frame (with-

out reuse).

Methods 1
st
frame 2

nd
frame 3

rd
frame 4

th
frame 5

th
frame

KPCN 0.011741 0.011547 0.011513 0.011533 0.011410

Without reuse 0.009758 0.009623 0.009699 0.009815 0.009468

With reuse - 0.008868 0.008671 0.009008 0.008431

AFGSA 0.014113 0.014044 0.014011 0.014100 0.014073

Without reuse 0.010020 0.009790 0.009292 0.010004 0.009275

With reuse - 0.008593 0.008332 0.008113 0.008094

to improve existing supervised methods for most cases (see Fig. 7),

but a failure case can occur when we correct denoised estimates

with much-higher quality than noisy estimates. As shown in Fig. 8,

our method fails to improve the denoised estimates of AFGSA for

the bathroom, e.g., 1.4% worse than the input. We improve the

numerical accuracy of the denoised estimates for the hair scene,

but our result leaves some residual noise.

For animated sequences, one might consider reusing the neu-

ral network trained by the previous frames as a starting point
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for the current frame without initializing the network parameters

randomly. Table 3 shows that this simple change improves our

post-correction accuracy (e.g., 8.5% to 23.3% improvement over

the random initialization). Nevertheless, it would be desirable to

incorporate temporal coherency in our framework to suppress flick-

ering artifacts. We leave this investigation as future work. It would

also be interesting to develop an extended self-supervised loss for

gradient-domain rendering [Hua et al. 2019; Lehtinen et al. 2013]

where estimated image gradients are available as additional unbi-

ased input.
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