
Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis

Thuan Hoang Nguyen∗ Thanh Van Le∗ Anh Tran
VinAI Research, Hanoi, Vietnam

{v.thuannh5,v.thanhlv19,v.anhtt152}@vinai.io

Abstract

Any-scale image synthesis offers an efficient and scal-
able solution to synthesize photo-realistic images at any
scale, even going beyond 2K resolution. However, exist-
ing GAN-based solutions depend excessively on convolu-
tions and a hierarchical architecture, which introduce in-
consistency and the “texture sticking” issue when scal-
ing the output resolution. From another perspective, INR-
based generators are scale-equivariant by design, but their
huge memory footprint and slow inference hinder these net-
works from being adopted in large-scale or real-time sys-
tems. In this work, we propose Column-Row Entangled
Pixel Synthesis (CREPS), a new generative model that is
both efficient and scale-equivariant without using any spa-
tial convolutions or coarse-to-fine design. To save memory
footprint and make the system scalable, we employ a novel
bi-line representation that decomposes layer-wise feature
maps into separate “thick” column and row encodings. Ex-
periments on various datasets, including FFHQ, LSUN-
Church, MetFaces, and Flickr-Scenery, confirm CREPS’
ability to synthesize scale-consistent and alias-free images
at any arbitrary resolution with proper training and infer-
ence speed. Code is available at https://github.
com/VinAIResearch/CREPS.

1. Introduction

Generative Adversarial Networks (GANs) [8] are one
of the most widely used structures for image generation
and manipulation [2, 28]. Previously, a GAN model could
only generate images with a fixed scale and layout as de-
fined in the training dataset. However, natural images come
with varying resolutions and contain unstructured objects
at diverse poses. Therefore, designing a generative model
that can handle more flexible geometric configurations is
gaining more attention in the machine-learning community.
StyleGAN3 [13] already supports out-of-the-box transla-
tion and rotation with consistent and artifact-free outputs.

*Equal contribution.

Anyres GAN ScaleParty Ours

O
rig

in
al

 
x2

 S
ca

le
 

Figure 1. Previous any-scale image synthesis networks, including
AnyresGAN [4] and ScaleParty [18], produce inconsistent image
details when changing the output scale (see zoomed-in patches).
In contrast, our proposed network can produce the same details
but sharper when increasing the scale. Check the supplemental
video mentioned in Sec. 4.4 for a clearer comparison.

Any-scale synthesis, however, remains under-explored.
In this paper, we are interested in the task of arbitrary-

scale image synthesis where a single generator can effort-
lessly synthesize images at many different scales while
strongly preserving detail consistency. Such a model can be
a promising research direction and bring many benefits. It
enables synthesizing a high-resolution image from a lower-
resolution training dataset. Hence, it eliminates the need for
collecting and training models on high-resolution images,
which is costly in storage, time, and computation resources.
The output resolution can be ultra-high, e.g., 2048 × 2048,
which is impossible for standard GAN models due to the
limit of GPU memory. Any-scale image synthesis also al-
lows geometric interactions like zooming in and out. De-
spite promising results, previous works on this topic, such
as AnyresGAN [4] and ScaleParty [18], show strong incon-
sistency when scaling the output resolution (see Fig. 1).

We investigate the GAN structures to find the poten-
tial cause of the inconsistency at image scaling. Tradi-
tional GAN models are based on convolutional generators

1

ar
X

iv
:2

30
3.

14
15

7v
3 

 [
cs

.C
V

] 
 2

5 
A

pr
 2

02
3

https://github.com/VinAIResearch/CREPS
https://github.com/VinAIResearch/CREPS


[3,15,20], which introduce an implicit spatial bias that helps
the model to produce high-quality images. Recently, Xu et
al. [29] and Karras et al. [13] discovered that these posi-
tional priors can hamper the model’s consistency when ap-
plying translations, rotations, or scalings. In order to com-
bat this issue, many works introduce non-trivial changes
such as sophisticated architecture re-design [13] or opt for a
better training strategy and input positional encoding [4,18].
However, these are only partial remedies as the output pix-
els still depend on their surroundings, making it impossible
for these models to produce consistent attributes of an ob-
ject regardless of positions and scales.

In contrast to the traditional GANs, some recent meth-
ods are based on Implicit Neural Representation (INR)
[1, 23]. By predicting the color of each pixel separately,
INR-based GANs can, in theory, synthesize objects in a
spatial-arbitrary manner and still achieve comparable qual-
ity at small to medium resolution compared to convolution-
based approach. However, these models’ memory usage
grows quadratically with the input resolution since all pixels
have to be queried. Thus, there has been no existing work
that can efficiently scale INR-GANs to resolutions higher
than 1024. To reduce training complexity, Anokhin et al. [1]
employs a simple patch-based strategy where only a portion
of pixels is generated and passed through the discriminator
at a time. However, this approach unsurprisingly leads to
poor results and inconsistency between patches.

Inspired by the latter approach, we aim to tackle the task
of scale-consistent image generation with essential changes
to StyleGAN2 [15]. Similar to Anokhin et al. [1], we
change the 3×3 convolutions to 1×1 ones and add a Fourier
feature embedding [25] at the input layer. Although these
two changes alone already achieve our goal, it is still expen-
sive to train in high-resolution settings. Thus, instead of us-
ing dense 2D features, our model relies on a novel thick bi-
line representation, which largely reduces the training and
inference complexity by using two low-rank features for
row and column. Our network first regresses these row and
column embeddings, then composes layer-wise intermedi-
ate 2D features, and finally fuses these maps to produce the
final output. We name this novel structure Column-Row
Entangled Pixel Synthesis, or CREPS for short.

We run a series of experiments on four datasets, includ-
ing FFHQ, MetFaces, LSUN-Church, and Flickr-Scenery,
to confirm the effectiveness of our proposed CREPS struc-
ture. Our model can synthesize images with quality compa-
rable to the previous generative models like CIPS or Style-
GAN2. While CIPS has trouble in training on images of res-
olutions more than 256× 256, CREPS can sufficiently han-
dle training data at resolutions 512× 512 and 1024× 1024.
CREPS produces scale-equivariant images and keeps the
object details unchanged when scaling the output resolu-
tion, unlike previous any-scale GANs such as AnyresGAN

and ScaleParty. Using a CREPS model trained on 512×512
images, we still can generate near-realistic images at higher
resolution. Finally, we demonstrate CREPS’s ability to syn-
thesize images with complex geometric transformations and
distortions while preserving attribute consistency.

To summarize our contributions:

• We propose a simple and elegant network equipped
with only modulated linear layers and no upsampling
layers in-between. It supports scale-consistent outputs
for any-scale image synthesis.

• To further improve efficiency, we introduce a thick
bi-line representation, which decomposes 2D network
features into two light-weight row and column embed-
dings. It significantly saves memory and computation
costs compared with the full 2D-feature counterparts.

• We demonstrate competitive results for unconditional
image synthesis on the FFHQ, LSUN-Church, Met-
Faces, and Flickr-Scenery datasets, along with the abil-
ity to generate each image at arbitrary scales with con-
sistent details.

• Our CREPS models support complex geometric trans-
formations and distortions.

2. Related Work

Generative Adversarial Networks. Prior to denoising dif-
fusion models [10, 24], GANs [8] hold state-of-the-art re-
sults for image synthesis tasks. The popular GAN mod-
els can generate realistic images at a high resolution, com-
monly up to 1024 × 1024 [3, 12–15]. The promising re-
sults obtained by GANs have motivated several applica-
tions of computer graphics and visual content generation.
However, these networks are only capable of generating
images with same geometric configurations, e.g., center-
located and face-forward objects. Recently, an exciting
work StyleGAN3 [13] aimed to generalize GAN to arbitrary
translation and rotation with consistent details, or Anycost
GAN [16] with multi-resolution generation. In the same
vein, ScaleParty [18] and AnyresGAN [4] extended Style-
GAN2 and StyleGAN3 to support scaling and other geo-
metric transformations by replacing learned input constant
with suitable positional encoding and multi-scale training
strategy. However, these works did not consider the scale
consistency, and their images showed varied details as the
output scale increases, illustrated in Fig. 1.

Implicit Neural Representation. Typically, images are
represented by a series of 2D arrays of values. However,
it can be viewed as a continuous mapping from a 2D co-
ordinate (x, y) ∈ R2 to the corresponding RGB value
(r, g, b) ∈ R3 and the mapping can be parameterized as a

2



black-box model. This coordinate-wise modeling has been
used in a wide range of neural rendering tasks [5,17,22,26],
where neural networks are used to provide an efficient and
continuous representation of data compared with traditional
methods. In the literature, implicit neural networks mainly
utilize fully-connected layers as their building blocks. Un-
like convolution or self-attention, such layers’ receptive
field size is exactly one; in other words, the output at ev-
ery coordinate is independent of each other.

INR-based GANs. As the number of research increased,
INR started to be used for generative tasks. These mod-
els soon inherited the success of GANs by employing the
adversarial training manner. Generative radiance fields
[6, 9, 19, 21] attempt to learn a view-consistent representa-
tion of 3D objects using implicit GAN. Despite all the suc-
cess of INRs in 3D GANs, limited attention has been paid
to utilizing the equivariance capability of fully-connected
layers in 2D counterparts. The closest to our work are INR-
GAN [23] and CIPS [1]. Both these works use a grid of
the target pixel coordinates as input for batch processing
instead of passing each point individually. INR-GAN em-
ploys a multi-scale structure, which we will discuss later
as a cause of scale inconsistency, while its uniform-scale
versions have poor generation outputs. Meanwhile, CIPS
does not need the multi-scale design thanks to its efficient
weight modulation and expressive input embedding. The
uniform-scale INR-GAN and CIPS disregard spatial convo-
lutions in the generator and synthesize each pixel indepen-
dently. However, their main goal is to investigate an alterna-
tive architecture that can compete with fully-convolutional
GANs rather than paying attention to the equivariance char-
acteristic of such models. They also struggle with expensive
computation costs and memory usage using full-resolution
2D feature maps in processing.

3. Proposed method

This section describes our proposed CREPS structure.
First, we recall the concept of any-scale image synthesis
(Sec. 3.1). Then, we revise two existing GAN structures that
support scale-equivariant image synthesis (Sec. 3.2). Next,
we discuss how to reduce computation cost via the novel
thick bi-line representation (Sec. 3.3). Finally, we describe
the layer-wise feature composition scheme for improving
the synthesis quality (Sec. 3.4).

3.1. Any-scale image synthesis

In this section, we introduce any-scale image synthesis
as the task of generating images while enforcing consis-
tency at different scales given a single model. One way
we naturally come up with is generating an image at many
scales altogether. MSG-GAN [11] is one of the earliest
works in this approach. Instead of producing single output,

MSG-GAN outputs an RGB image at each block of the gen-
erator, resulting in a mipmap representation [27]. However,
this approach can only output pre-defined discrete scales,
and there is no mechanism to guarantee scale consistency.

As such, we should consider injecting positional encod-
ing e as an additional input alongside the latent code into
the generator. This approach is employed in some previous
works [1, 4, 18, 23], in which e is a 2D grid of normalized
(x, y) coordinates. If e is a regular grid, we can decom-
pose it into two vectors for the row and column coordinates
denoted as er and ec, respectively. The image generation
process now becomes:

I = G(z, er, ec), (1)

with G is the generative model and z is the latent input.
The decomposition from e to er and ec is more suitable to
our thick bi-line representation, as later discussed. Doing
so allows us to easily control the output’s scale and other
spatial properties via appropriate input encoding. However,
naively adding positional input into an existing generator
does not guarantee that the output image is equivariant to
the change in the input coordinates. For example, when
Karras et al. [13] replace the learnable constant in Style-
GAN2’s input layer with Fourier features (Config B), the
“texture sticking”’ issue still occurs. Therefore, proper net-
work design and training strategy should be examined to
alleviate the output’s geometric inconsistency.

3.2. Removing coarse-to-fine design and spatial con-
volution

We investigate two network structures that support any
resolution image generation, including AnyresGAN [4] and
CIPS [1], when keeping the same latent input but gradually
increasing the output resolution. The former is built upon
StyleGAN3 [13] with additional scale information concate-
nated with the latent code and a multi-scale training scheme.
In contrast, the latter changes the 3x3 convolution of Style-
GAN2 with a point-wise one and adds learnable Fourier
features at the beginning. Both models are capable of multi-
scale generation, but they have different behaviors that we
will discuss below.

As illustrated in Fig. 1, while having good photo-realism,
AnyresGAN produces different image details at different
scales. This can be explained by the fact that AnyresGAN,
similar to most other GAN-based works, relies on spatial
convolutions, such as 2D convolution with kernel size 3× 3
and upsample layers. When changing the output resolution,
the neighbor pixels at each location change, greatly varying
the output of this spatial-convolution-based network.

On the other hand, CIPS keeps the output image’s details
nearly same regardless of resolution, thanks to its spatial-
free building operators. CIPS, however, is very compu-
tationally expensive; this can be clearly shown in Tab. 1.

3



M
ap

pi
ng

 
ne

tw
or

k
z ~ (0,1)

w

Output

Synthesis
Block

DecoderSynthesis
Block

Synthesis
Block

Decoder

Decoder

Refine-
ment

er ec

f 
(1)

f 
(2)

f 
(N)

r c

r c

r c

F

F 
(1)

F 
(2)

F 
(N)

Synthesis
network

(a) Network structure

f r

f c

jif r f c.i

jF

D
D

W

H

(b) Thick bi-line composition

Synthesis
Block

ToRGBSynthesis
Block

ToRGB

O(1)

O 
(2)

F 

Output

w

(c) Refinement block

Figure 2. Our proposed CREPS structure

Resolution Batch size
Memory Usage Running time

StyleGAN2 CIPS Ours StyleGAN2 CIPS Ours

256× 256
1 1.5GB 3.3GB 2.3GB 0.04s 0.06s 0.03s
4 2.5GB 10.2GB 5.2GB 0.05s 0.23s 0.06s

512× 512
1 1.7GB 10.4GB 4.5GB 0.04s 0.21s 0.05s
4 3.4GB OOM 14.6GB 0.06s OOM 0.16s

Table 1. Memory usage and running time comparison between StyleGAN2, CIPS and our method. OOM means out-of-memory.

When measured on a single NVIDIA V100 GPU (32 GB)
and all models have comparable number of parameters, it
runs slower than StyleGAN2 as well as requires much more
memory or even gets an out-of-memory (OOM) error when
running at 512× 512 resolution. This makes CIPS inappli-
cable to use for learning fine details from high-resolution
datasets. Moreover, it is worth noting that our method
achieve the best trade-off between speed and memory.

Based on the above observations, we implement CREPS
without any spatial convolutions or coarse-to-fine design.
Starting with StyleGAN2 [15], which consists of a mapping
network and a generator, we remove all upsampling opera-
tors and replace all spatial convolutions with 1 × 1 convo-
lutions, which are equivalent to pixel-wise fully-connected
layers. Next, we replace the constant in the first synthesis
block with Fourier encodings of the input coordinate row
and column er and ec. This design is quite similar to CIPS,
with only two minor differences. Firstly, the dense 2D grid
input is now split into two vectors representing the row and
column. Secondly, we do not combine learned input con-
stant with the Fourier feature like CIPS did, making our

model simpler and more memory-friendly. While this initial
network guarantees any-scale image synthesis with consis-
tent image details, it faces the same memory issue as CIPS.
We will discuss next how to solve this issue effectively.

3.3. Thick bi-line representation

Inspired by the tri-plane representation in [6], we pro-
pose to decompose each feature with 2D spatial dimensions
into a column and a row embedding for a memory-efficient
representation. For simplicity, let us drop the first two di-
mensions for the batch size B and the number of channel
C, which are the same and element-wise processed for both
the feature map and the mentioned embeddings. Let us de-
note the feature map as F ∈ RH×W , with H and W as the
height and width, respectively. We can decompose F to a
row embedding fr and a column embedding f c. In the sim-
plest form, fr and f c are 1D vectors with the lengths H and
W , respectively. Each pixel in the feature map Fij , with i
and j as the row and the column indices, can be computed
as the product of the corresponding elements in fr and f c:

Fij = fr
i f

c
j . (2)

4



Input D = 1
(bi-line) D = 8 D = 16 D = 32

0.073 0.013 0.007 0.004MSE
Figure 3. Fitting an input image to the thick bi-line representation
in the image space.

We call this representation “bi-line”, which significantly re-
duces the memory usage and computation cost and allows
the network to learn with high-resolution data. However,
we found that this simple representation had a limited ca-
pacity and could not define complex structures. To enrich
its representation power, we “thicken” the embeddings by
adding an extra, short dimension. The revised fr and f c

now have the shapes H × D and W × D, respectively,
where D ≪ min(H,W ) is a uniform embedding “thick-
ness”. The composing feature element Fij is now the dot
product of the corresponding elements in fr and f c:

Fij = fr
i · f c

j =

D∑
d=1

fr
idf

c
jd. (3)

This composition process is illustrated in Fig. 2b. In another
perspective, this can be considered as sum of D different bi-
line compositions. We call it “thick bi-line” representation.

In Fig. 3, we provide a toy example illustrating the ca-
pacity of the proposed thick bi-line representation. Given
an input image at resolution 512×512×3, we fit it into the
proposed bi-line representation in the image space by opti-
mizing a row and a column embedding of shape 512×D×3.
Note that each channel is optimized independently. As can
be seen, with the naive bi-linear composition (D = 1), the
reconstructed image is just a simple, incomprehensible grid.
By adding just a small thickness D = 8, we can capture
the essential image content, recover the subject’s identity,
and reduce the MSE almost 6 times. When using D = 32,
we nearly recover the original image with only subtle pixel
noise. Note that the row and column embeddings only take
1.56% of the original image size when D = 8 and 12.5%
when D = 32. This experiment confirms the efficacy of
our proposed thick bi-line decomposition. Also, while this
representation does not capture all details of the complex
input image, it is more sufficient when modeling the over-
parameterized feature space.

3.4. Layer-wise feature composition

In CREPS, we assume the target output is square, i.e.,
H = W . Hence, we can concatenate the row and column
embeddings to a single tensor f = [fr, f c] ∈ RH×2D. Ini-
tially, we implement CREPS by revising StyleGAN2’s code
to predict f from the latent input w via N synthesis blocks.

The network then splits f to get the row and column codes,
perform the feature composition defined in Eq. (3) to get a
feature map F . This feature map will be passed to a simple
refinement module (Fig. 2c) with 2 synthesis blocks to pro-
duce the output image. For efficient memory and computa-
tion cost, we only employ a small thickness value D = 8.

We found this initial design needed to be more efficient
to catch up with the generation quality of StyleGAN and
CIPS. It performed feature composition once near the end
of the image synthesis process; thus, the model power was
bounded by the capacity of the thick bi-line representation.
Instead, we revise our solution by employing a layer-wise
feature composition scheme. Specially, at each layer with
index l ∈ [1..N ], we extract the intermediate row and col-
umn embedding f (l). We can split f (l) and compose an
intermediate feature map F (l), following Eq. (3). Then,
the intermediate maps across layers are fused to get the fi-
nal map F . This scheme enriches the representation power,
similar to when increasing D while using less memory.

The fusion scheme is also important. Intuitively, we can
set F as the sum of the intermediate maps {F (l)}l=1,N .
However, this formulation treats the maps equally, and we
find it undesirable. Let us call back the StyleGAN models’
behavior. Thanks to the coarse-to-fine design, their early
layers learn to capture the global shape, while the later lay-
ers learn to synthesize fine details. Since CREPS has no
coarse-to-fine structure, it is hard to control which aspect of
the output image each layer can learn. Hence, we propose
adding asymmetry to the feature map fusion process: the
feature maps at earlier layers are processed “deeper” than
those at later layers. We hope it implicitly guides the layers
to learn information from global to regional order, similar
to StyleGAN. To do so, we introduce at each layer with in-
dex l a narrow decoder, denoted as π(l). The process to fuse
the intermediate maps {F (l)}l=1,N is defined as following:

E(1) = F (1), (4)

E(l+1) = π(l)(E(l)) + F (l+1) ∀l ∈ [1, N − 1], (5)

F = πN (EN ), (6)

with E(l) records the fused feature map at the lth layer.
In our implementation, each decoder consists of pixel-
wise fully-connected layers with Leaky-RELU activations.
Fig. 2a illustrates our proposed network structure, while
Tab. 1 illustrates the efficiency of our proposed structure in
memory usage and running time.

4. Experiments
4.1. Experimental setup

Datasets. We conduct experiments on the common datasets
when benchmarking CREPS, including FFHQ, MetFaces,

5



Figure 4. Sample images with our models trained on FFHQ
(upper-left), LSUN-Church (upper-right), MetFace (bottom-left),
and Flickr-Scenery (bottom-right).

LSUN-Church, and Flickr-Scenery. FFHQ dataset contains
70k high-quality, diverse human faces collected from Flickr.
We will use the FFHQ images with resolution 512 × 512.
MetFaces is a small dataset of face drawings extracted from
the collection of the Metropolitan Museum of Art, with a
total of 1336 images at resolution 1024 × 1024. LSUN-
Church consists of 126k outdoor photographs of churches
at the resolution 256 × 256. Finally, Flickr-Scenery [7] is
a landscape-centric dataset collected on Flickr with 50k im-
ages at resolution 256× 256.

Implementation. We use StyleGAN2 network design as a
reference to implement CREPS. Except for the refinement
module, our generator consists of 6 (for the target resolu-
tion 256) to 8 synthesis blocks (for the resolution 1024)
and the same number of decoder blocks. We replace all
modulated convolution layers in StyleGAN2 with modu-
lated fully-connected ones. Unlike StyleGAN2, the output
of each block is not an RGB image but a 32-channel bi-line
feature with thickness D = 8. Each decoder is a stack of
P = 4 pixel-wise fully-connected layers, with the channel
widths ranging from 32 to 128. This setting is applied for
all experiments, except for our ablation study. Similar to
StyleGAN3 and CIPS, we turn off style mixing regulariza-
tion. Besides that, we kept most of the other components
unchanged, including the mapping network, discriminator,
path length regularization, and R1 gradient penalty.

Training. For FFHQ and LSUN-Church, our networks
were trained from scratch until convergence. To verify
the flexibility and scale consistency of CREPS on higher-

resolution image synthesis, we increase the length of its co-
ordinate input to generate images at resolution 1024×1024
on the FFHQ dataset. We also test the adaptability of our
network on domain shift by applying transfer learning from
the weights trained on FFHQ to MetFaces. Our networks
were trained by Adam optimizer with learning rate 2×10−3

and hyperparameters β0 = 0, β1 = 0.99, and ϵ = 10−8. We
use 4 NVIDIA A100 40GB GPUs for training all models.

4.2. Image generation

Tab. 2 compares the quality of images generated by our
CREPS models with the standard spatial-convolution-based
StyleGAN2 and the only scale-consistent any-scale image
generation technique CIPS, using the Frechet Inception Dis-
tance (FID) score.

At resolution 512 × 512 on FFHQ, our model achieves
the FID score of 4.43, which is much better than the score
from CIPS (6.18) and not far from StyleGAN2 (3.41). We
can also use this model to generate images at resolution
1024 × 1024 without retraining and achieve a better FID
score (4.09). We found that CIPS cannot be trained for this
resolution due to its expensive memory usage, even with
training batch size 1, when using its official code. However,
the authors provided a pretrained model for FFHQ-1024 us-
ing a progressive training scheme (no released code). This
CIPS model has an FID score of 10.07, much worse than
ours. This confirms the superiority of our method over its
scale-consistent image generation counterpart.

On the MetFaces dataset, CREPS’s FID score is 20.52,
which is quite close to the score of StyleGAN2-Ada (18.22).
As mentioned, CIPS fails to train on this 1024× 1024 reso-
lution using its official code. It confirms that bi-line repre-
sentation does not constrain the adaptability of our model.

On LSUN-Church and Flickr-Scenery, although the un-
structured and diverse images in these datasets are intu-
itively adverse to column and row decomposition, CREPS
obtains good results with only a small gap compared with
StyleGAN2’s ones. Note that CIPS achieves a surprisingly
good result on LSUN-Church; it surpasses not only CREPS
but also StyleGAN2 in this setting.

Fig. 4 provides some samples synthesized by our net-
works on the benchmark datasets. As can be seen, CREPS
produces highly realistic images in all cases.

4.3. Generate arbitrary-scale images

While our models are trained on images with resolutions
from 256 × 256 to 1024 × 1024, they can generate images
at any scale. One way is that we simply scale the length
of er and ec, and the output size is changed accordingly,
thanks to our network design. With a V100 GPU (32GB),
our models can generate an image up to resolution 3687 ×
3687 in a single run. Or we can generate an image patch-by-
patch with suitable coordinate inputs, then combine them

6



Generator FFHQ-512 FFHQ-1024 LSUN Church-256 MetFaces-1024 Scenery-256
StyleGANv2 3.41 2.84 3.86 18.22∗ 6.40

CIPS 6.18 10.07† 2.92 OOM 8.49
CREPS (ours) 4.43 4.09‡ 5.50 20.52 7.21

Table 2. Comparison of our method against other works in FID metric. OOM means out-of-memory. ‘∗’ means the result is taken from
StyleGAN2-Ada paper [12]. ‘†’ means the model is provided without releasing its progressive training code. ‘‡’ means the result is
obtained by scaling the output resolution of the FFHQ-512 model.

PSNR ↑ SSIM ↑ LPIPS ↓
AnyresGAN 24.19 0.73 0.07
ScaleParty 24.50 0.70 0.08

CIPS 33.33 0.93 0.05
CREPS 34.65 0.96 0.01

Table 3. Scale consistency comparison of our method against three
other works on PSNR, SSIM and LPIP. The best scores are bold.

AnyresGAN CREPSCIPSScaleParty

25

0

Figure 5. Qualitative results for the scale consistency experiment.
For each method, we provide a sample generated 256×256 image
(top) and the magnified (×10) residual map between it and the
512× 512 rescaled version (bottom).

together into a single gigantic image with no upper limit
in the output size. We provide some images generated at
6K resolution at here. While these images are not as sharp
as real-world ultra-high-resolution images, they are much
sharper than the ones generated at resolution 512× 512 and
then upscaled with Lanczos resampling.

4.4. Image scaling consistency

In this section, we evaluate the scale consistency of im-
ages produced by CREPS and other methods, including
AnyresGAN [4], ScaleParty [18], and CIPS [1]. We run
this experiment using models trained on the FFHQ dataset.
For each model, we first randomly generate 10k images at
resolution 256 × 256 (first set). We then generate images
with the same latent codes but at resolution 512 × 512 and
downsample them to 256×256 (second set). The images in
two sets are expected to be the same. Hence, we can com-
pare two sets, with standard metrics such as PSNR, SSIM,
and LPIPS, to measure each model’s scale equivariance.

Note that for ScaleParty and AnyresGAN, the pretrained
weights are already trained with different resolutions at
once, so we directly use their provided version. CIPS, how-

Configuration FID Memory Time
CREP-NB 5.98 2.7GB 0.13s
+ bi-line and d=1 11.37 1.5GB 0.02s
+ bi-line and d=8 8.23 1.6GB 0.03s
+ no decoder and d=8 6.91 1.7GB 0.03s
+ multiple decoders and d=4 6.46 1.6GB 0.03s
+ multiple decoders and d=8 4.66 1.7GB 0.04s
CIPS 7.08 3.5GB 0.05s

Table 4. Effects of the modifications of CREPS on the FFHQ
dataset in terms of FID score, memory usage, and running time.

ever, is trained in a single-scale setting, so we use the avail-
able weights trained at the highest resolution (1024×1024)
but pass the input coordinate with size 512× 512 to synthe-
sis image at resolution 512. As for CREPS, we simply use
the weight trained at resolution 512× 512.

We report the qualitative and quantitative results in Fig. 5
and Tab. 3. As can be seen, it is clear that CREPS achieves
the best scale consistency, while convolution-based models
like ScaleParty and AnyresGAN perform poorly.

Additionally, we provide a scale-consistency compari-
son video of CREPS with previous any-scale synthesis ar-
chitectures, including AnyresGAN [4], ScaleParty [18], and
CIPS [1] at here. Note that, for a fair comparison, we use
the provided codes from each method to produce the video
except for ScaleParty, where we obtain the video directly
from their codebase. For clearer visualization, we highlight
the crop with the largest changes in AnyresGAN’s output
with a blue square.

4.5. Ablation studies

To better understand our proposed techniques, we ana-
lyze the effect of different parts of CREPS on the FFHQ
datasets. We first consider a no-bi-line version of CREPS
as a baseline (referred to as CREPS-NB), with the decoder
layers removed and dense 2D used as input. We then ap-
ply bi-line decomposition but fuse the bi-line features only
once at the end, with gradually increased thickness. Lastly,
we add multiple decoders for layer-wise feature composi-
tion as introduced in Sec. 3.4. Because of limited time and
computational resources, we only evaluate on 128 × 128
resolution and all of our models were trained for maximum
of 2 days.

As the results in Tab. 4 show, CIPS performs worst in all

7

https://drive.google.com/drive/folders/14tvr9x2JzMkCF1CWNbMtc0gDLuTigWv7?usp=share_link
https://drive.google.com/file/d/1PjMX90L_p74OBUkvADm57s7LMUh-iVgR/view


Normal Translate Zoom-out Zoom-in Rotate-30o Distort

Figure 6. Geometric transformations on the same target image
(FFHQ-512 model) by changing the input coordinates. We mark
the original image boundary using a red rectangle.

three aspects compared with most of our models. Simply
adding the bi-line with a single decoder at the end nearly
halves the memory costs, but the FID score is still behind
CREPS-NB even when the thickness is increased to d = 8.
However, multiple decoders can help bring the image qual-
ity back to the level of CREPS-NB and even better with
d = 8. In all settings, it can be clearly seen that we easily
boost the FID score when increasing the thickness. More-
over, we also omit the decoder π between synthesis blocks
and simplify the fusion scheme to E(l+1) = E(l)+F (l+1),
which leads to even worse FID score than the smaller con-
fig with multiple decoders and d=4. These observations
prove the importance and effectiveness of our proposed
techniques. Remarkably, while the decoders seem compute-
intensive, they are actually lightweight due to their narrow
width compared with other layers, causing only small in-
creases in memory and time.

4.6. Simple and complex geometric transformation

Our CREPS model can support various geometric trans-
formations on the same target image by keeping the input
latent code z but changing the input coordinates er and ec.
We can translate the image by adding coordinate shifts δy
and δx to the row and column input coordinates, respec-
tively. We can also multiply these input coordinates by the
same constant s > 1 for zooming out or divide them by s
for zooming in. As can be seen in the first three column
in Fig. 6, CREPS can perform those simple transformations
with consistent details. Notably, CREPS can extrapolate the
points outside the original image boundary, although it has
never been trained on such input coordinates.

It is tricky for CREPS to handle complex transformations
such as rotation or distortion since CREPS only takes in a
row and a column coordinate input. Instead of producing
the target image in one run, we can execute CREPS multiple
times to generate different parts of the output image, then
combine them. The simplest algorithm is to sample each
target pixel per run by setting a single value for er and ec.
However, that algorithm is too slow, which requires 262k
runs to produce a single 512 × 512 image. A faster way is
to sample the target image row-by-row. Assuming we need
to generate an image I with the input latent z and the tar-
get pixels’ normalized coordinates {(rij , cij)}i=1,H,j=1,W .
We can produce each row Ii of the target image by gener-

F 
(l)

E 
(l)

l =

F

1 2 3 4 5 6 7

O
u
t
p
u
t

Figure 7. Visualization of the feature maps extracted from our
FFHQ-512 model. Each feature map is averaged over all channels.

Zoomed-in

Figure 8. Samples of the most common kinds of artifacts on differ-
ent datasets. They are best described as repeating/wavy patterns,
vertical symmetry, and glowing blobs. Left-most image is cropped
and zoomed-in from a full-face image.

ating an intermediate image I’ using the input coordinates
er = [rij ]j=1,W and ec = [cij ]j=1,W and sample its diag-
onal Ii = diag(I ′). We provide two examples with rota-
tion and elastic distortion in the last two columns of Fig. 6.
Both images are correctly transformed with unchanged con-
tent. Additional qualitative result on geometric transforma-
tion can be viewed at here

4.7. Feature analysis

We visualize the key feature maps inside our FFHQ-512
model when generating a facial image and provide them
in Fig. 7. The maps include the layer-wise composed fea-
tures {F (l)}l=1,N , the corresponding layer-wise fused maps
{E(l)}l=1,N , and the final feature map F (see Eq. 4-6).
Thanks to the asymmetric fusion scheme, the model seems
to synthesize the output in a coarse-to-fine manner. The
early composed feature maps are smooth and focus on the
global structure, while the later ones focus on sharp details.
Although each composed feature map F (l) is quite simple,
the network can represent complex content by fusion.

4.8. Limitation

Being a fully-connected generator, CREPS shares the
same limitation with other similar work, which is the lack
of spatial bias since each pixel is independently generated.
Hence, some spatial-related artifacts occasionally occur in
our generated images (Fig. 8). A potential cause is the
sine activation at the beginning, producing repeating pat-
terns and vertical symmetry of the output. We also note that
some samples contain a noticeable blob that is completely
out-of-domain. We found CIPS facing the same problem,
and the root cause can be the missing spatial guidance from
neighboring pixels and the effect of Leaky-RELU activa-
tions which strengthens the isolation of some pixel regions.

8

https://drive.google.com/file/d/1PjMX90L_p74OBUkvADm57s7LMUh-iVgR/view


5. Conclusion
In this paper, we present a new architecture named

CREPS, a cost-effective and scale-equivariant generator
that can synthesize images with any target resolution. Our
key contributions are an INR-based design, a thick bi-
line representation, and a layer-wise feature composition
scheme. While being more memory-efficient, our CREPS
models can produce highly realistic images and surpass the
INR-based model CIPS in most cases. CREPS also of-
fers the best scale consistency by keeping image details un-
changed when varying the output resolution. We conducted
several experiments to explore some attractive properties of
this fully-connected generator and discussed CREPS’s ap-
plications in various scenarios. Future development of our
approach can be eliminating artifacts mentioned in Sec. 4.8
and further improving the quality of our samples.

References
[1] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb

Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
generators with conditionally-independent pixel synthesis.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2, 3, 7

[2] A.H. Bermano, R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O.
Tov, O. Patashnik, and D. Cohen-Or. State-of-the-art in the
architecture, methods and applications of stylegan. Com-
puter Graphics Forum, 41(2):591–611, 2022. 1

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions (ICLR), 2018. 2

[4] Lucy Chai, Michael Gharbi, Eli Shechtman, Phillip Isola,
and Richard Zhang. Any-resolution training for high-
resolution image synthesis. In European Conference on
Computer Vision (ECCV), 2022. 1, 2, 3, 7, 11, 12

[5] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit gener-
ative adversarial networks for 3d-aware image synthesis.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 3

[6] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
3, 4

[7] Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee, Jian Ren,
Sergey Tulyakov, and Ming-Hsuan Yang. In&out: Diverse
image outpainting via gan inversion. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 6

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 1, 2

[9] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In International Conference on
Learning Representations (ICLR), 2022. 3

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[11] Animesh Karnewar, Oliver Wang, and Raghu Sesha Iyengar.
Msg-gan: Multi-scale gradient gan for stable image synthe-
sis. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 3

[12] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Conference on Neural
Information Processing Systems (NeurIPS), 2020. 2, 7, 11

[13] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In Conference on Neural
Information Processing Systems (NeurIPS), 2021. 1, 2, 3

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[15] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
2, 4, 11

[16] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-
Yan Zhu. Anycost gans for interactive image synthesis and
editing. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[17] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 3

[18] Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis,
Radu Timofte, Martin Danelljan, and Luc Van Gool.
Arbitrary-scale image synthesis. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2022. 1, 2, 3, 7, 11

[19] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shecht-
man, Jeong Joon Park, and Ira Kemelmacher-Shlizerman.
StyleSDF: High-Resolution 3D-Consistent Image and Ge-
ometry Generation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022. 3

[20] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks, 2015. 2

[21] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Conference on Neural Information Processing
Systems (NeurIPS), 2020. 3

[22] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 3

9



[23] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2, 3

[24] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2020. 2

[25] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2020. 2

[26] A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk,
W. Yifan, C. Lassner, V. Sitzmann, R. Martin-Brualla, S.
Lombardi, T. Simon, C. Theobalt, M. Nießner, J. T. Bar-
ron, G. Wetzstein, M. Zollhöfer, and V. Golyanik. Advances
in neural rendering. Computer Graphics Forum, 41(2):703–
735, 2022. 3

[27] Lance Williams. Pyramidal parametrics. Proceedings of the
10th annual conference on Computer graphics and interac-
tive techniques, 1983. 3

[28] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei
Zhou, and Ming-Hsuan Yang. Gan inversion: A survey.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 2022. 1

[29] Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and
Chen Change Loy. Positional encoding as spatial inductive
bias in gans. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

10



A. Implementation details
A.1. Architecture details

In this section, we describe in detail the implementation
of each component in our proposed method.

Synthesis block As reported in the main paper, this block
is largely identical to the blocks in [15] with some minor
modifications. First, we change the kernel size of the con-
volution operator from 3 × 3 to 1 × 1 one. Second, we
dismiss the use of small injection noise to the feature output
as it is against our objective of scale-invariant generation.
Third, we double the number of channels in this block com-
pared to [15] to improve the capacity of the bi-line features.
This block both receives and outputs bi-line features.

Refinements block consists of two synthesis blocks with
the hidden width of 128 and 64, respectively (Tab. 5). In-
stead of bi-line features, this block input and output are both
2D features; the input feature map is decoded from previous
bi-line features. The residual output of each synthesis block
will be an RGB image in the shape of 3×R×R.

Decoder block is a stack of fully-connected layers with
LeakyReLU activations in-between. The structure of this
block is illustrated in Tab. 6.

A.2. Transfer learning details

Similar to Karras et al. [12], we train MetFaces and
AFHQ-Dog (next section) with adaptive discriminator aug-
mentation (ADA) [12] using weights trained on FFHQ-
512. Even though our FFHQ was trained with resolu-
tion 512 × 512 only, we can easily train on resolution
1024× 1024 simply by doubling the length of row and col-
umn coordinates er and ec. The transfer learning results are
reported in Appendix B.

Layer Input Shape Output Shape
SynthesisBlock(32, 128) 32×R×R 128×R×R
ToRGB(128, 3) 128×R×R 3×R×R
SynthesisBlock(128, 64) 32×R×R 64×R×R
ToRGB(64, 3) 64×R×R 3×R×R

Table 5. Structure of Refinements Block.

Layer Input Shape Output Shape
Fusion 32×R× 2D R×R× 32
Linear(32, 64) R×R× 32 R×R× 64
Linear(64, 128) R×R× 64 R×R× 128
Linear(128, 64) R×R× 128 R×R× 64
Linear(64, 32) R×R× 64 R×R× 32
Permute R×R× 32 32×R×R

Table 6. Structure of Decoder Block.

A.3. Training config

To train our models, we start with the batch size of 128
and gamma of 0.5 for resolution 128 × 128. For higher
resolution, we decrease the batch size and increase gamma
to further stablilize the training. Specifically, for resolution
512 × 512, we use 32 and 10 for batch size and gamma
respectively. Lastly, we set the batch size and gamma as 8
and 32 for resolution 1024× 1024

B. Additional Quantitative Results
B.1. Transfer learning results on AFHQ-Dog

Besides MetFaces, we conduct a further experiment to
verify the adaptability of our model from FFHQ to AFHQ-
Dog. AFHQ-Dog consists of 4677 facial images of vari-
ous dog breeds at resolution 1024 × 1024. Following prior
works [12], we directly use the weight of CREPS trained on
FFHQ and continue the training on AFHQ-Dog. Our model
achieved an FID score of 9.7, which is slightly higher than
the FID score of StyleGAN2-ADA (7.4). However, qual-
itatively, the images generated by this model are of good
quality as illustrated in Fig. 13.

B.2. Comparison With AnyresGAN and ScaleParty

We provide an additional comparison in terms of FID
score with two prior works that support any-scale image
synthesis, including AnyresGAN [4] and ScaleParty [18],
in Tab. 7. Note that both of them make use of spatial con-
volution, so they are not scale-consistent. Here, the FID
scores of AnyresGAN are taken directly from the paper,
while those for ScaleParty are re-computed using their pub-
licly available code and pre-trained model.

C. Additional qualitative results
C.1. Super-resolution comparison

By scaling the length of row and column coordinates er

and ec, CREPS can not only generate higher output reso-
lution but also produce finer details. As shown in Fig. 9,
the crop of an image generated by scaling the coordinate
of CREPS from 512 to 2048 has more details than directly
applying Lanczos upsampling on the corresponding image
generated at resolution 512× 512.

C.2. Additional image generation results

We provide additional results generated by CREPS on
FFHQ and LSUN-Church in Figs. 10 and 11. We further
verify that our proposed bi-line representation does not limit
the capacity of our models by performing transfer learning
from FFHQ-512 to MetFaces and AFHQ-Dog. The results
are shown in Fig. 12 and Fig. 13, respectively.

11



Generator FFHQ-512 FFHQ-1024 LSUN Church-256
ScaleParty 6.23† 10.91† N/A

AnyresGAN 3.71∗ 4.06∗ 3.84∗

CREPS (ours) 4.43 4.09‡ 5.50

Table 7. Comparison of our method against other works in FID metric. ‘∗’ means the result is taken from original paper [4]. ‘†’ means the
result is obtained by re-computing the score using the code from author. ‘‡’ means the result is obtained by scaling the output resolution of
the FFHQ-512 model. N/A means the pretrained weight for this dataset is not released.

Figure 9. Comparison of CREPS high-resolution image synthesis with Lanzcos upsampling on FFHQ. Top: Images synthesized by CREPS
at resolution 512×512. Bottom left: the crop at resolution 512×512, upscaled with Lanczos upsampling. Bottom right: the corresponded
crop of CREPS at resolution 2048× 2048.

Figure 10. Sample images generated by our models on FFHQ resolution 512× 512

12



Figure 11. Sample images generated by our models on LSUN Church resolution 256× 256

Figure 12. Sample images generated by our models on MetFaces resolution 1024× 1024

13



Figure 13. Sample images generated by our models on AFHQ-Dog resolution 1024× 1024

14


	1 . Introduction
	2 . Related Work
	3 . Proposed method
	3.1 . Any-scale image synthesis
	3.2 . Removing coarse-to-fine design and spatial convolution
	3.3 . Thick bi-line representation
	3.4 . Layer-wise feature composition

	4 . Experiments
	4.1 . Experimental setup
	4.2 . Image generation
	4.3 . Generate arbitrary-scale images
	4.4 . Image scaling consistency
	4.5 . Ablation studies
	4.6 . Simple and complex geometric transformation
	4.7 . Feature analysis
	4.8 . Limitation

	5 . Conclusion
	A . Implementation details
	A.1 . Architecture details
	A.2 . Transfer learning details
	A.3 . Training config

	B . Additional Quantitative Results
	B.1 . Transfer learning results on AFHQ-Dog
	B.2 . Comparison With AnyresGAN and ScaleParty

	C . Additional qualitative results
	C.1 . Super-resolution comparison
	C.2 . Additional image generation results


