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ABSTRACT MAP estimation plays an important role in many probabilistic models. However, in many cases,
the MAP problem is non-convex and intractable. In this work, we propose a novel algorithm, called BOPE,
which uses Bernoulli randomness for Online Maximum a Posteriori Estimation. We show that BOPE has a
fast convergence rate. In particular, BOPE implicitly employs a prior which plays as regularization. Such a
prior is different from the one of the MAP problem and will be vanishing as BOPE does more iterations. This
property of BOPE is significant and enables to reduce severe overfitting for probabilistic models in ill-posed
cases, including short text, sparse data, and noisy data. We validate the practical efficiency of BOPE in
two contexts: text analysis and recommender systems. Both contexts show the superior of BOPE over the
baselines.

INDEX TERMS Bernoulli randomness, online MAP estimation, probabilistic models.

I. INTRODUCTION
Maximum a Posteriori (MAP) estimation is a popular
approach to inference in probabilistic models [1], [2]. It plays
an essential role in various practical scenarios where there
exist hidden variables or uncertainty. Some applications
include image processing [3], [4], text analysis [5]–[7], rec-
ommender system [8], protein design and protein side-chain
prediction problems [9], [10]. Adding the prior probability
information reduces the overdependence on the observed data
for parameter estimation, MAP estimation be seen as a regu-
larization of Maximum Likelihood Estimation (MLE), MAP
can deal well with low training data. In MAP estimation, our
task is to find

x∗ = argmax
x∈�

P(x|D) (1)

where D denotes the observed data, x denotes a hid-
den/unobserved variable, and � denotes the domain of x.
Using Bayes’ theorem, we have

P(x|D) =
P(D|x)P(x)

P(D)
∝ P(D|x)P(x) (2)

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomasz Trzcinski.

where P(D|x) denotes the likelihood of D, P(x) denotes the
prior of x, and P(D) denotes the marginal probability of D.
Using (2), we can rewrite (1) as

x∗ = argmax
x∈�

[f (x) = logP(D|x)+ logP(x)] (3)

In general, the MAP problem is well-known to be NP-hard
[11], [12], and is at least as computationally difficult as
MLE [13]. Hence, there is a large number of studies about
approximate methods [4], [9], [10], [14]–[20]. It is interesting
that most existing studies focus on discrete MAP, i.e., when
domain � is discrete.
In this work, we focus on the MAP problem which

is continuous and non-convex, i.e., when the function
−f (x) = − logP(D|x) − logP(x) is non-convex over
the continuous domain �. In contrast with convex cases
which are tractable [4], the non-convex MAP problem is
NP-hard and hence intractable [11]. A popular choice is to
employ some recent advances in non-convex optimization
such as Concave-Convex procedure (CCCP) [21], Stochas-
tic Majorization-Minimization (SMM) [22], Frank-Wolfe
(FW) [23], Online Frank-Wolfe (OFW) [24], [25], Natasha2
[26], NEON2 [27] to solve the MAP estimation as a
non-convex optimization problem. However, the non-convex
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optimization is NP-hard [25], [28], [29] and those methods
for general non-convex problems may not provide good solu-
tions since they ignore the special structure of the MAP prob-
lem in probabilistic models. Many approaches to estimating
a full posterior distribution have been studied, e.g., Varia-
tional Bayes (VB) [30], collapsed Variational Bayes (CVB)
[31], Collapsed Gibbs Sampling (CGS) [32], Particle Mirror
Decent (PMD) [33], Hessian Approximated Markov Chain
Monte Carlo (HAMCMC) [34]. However, those approaches
do not solve directly the MAP problem, thus, provide subop-
timal solutions, and have a slow convergence rate.

Our contributions are as follows:

- We introduce a novel efficient algorithm, namely
Bernoulli randomness in Online maximum a Posteriori
Estimation (BOPE), for solving the non-convex MAP
problem via using Bernoulli sampling and stochastic
bounds. BOPE is stochastic in nature and converges to a
stationary point of the MAP problem at a rate ofO(1/T )
which is the state-of-the-art convergence rate, where T
denotes the number of iterations. BOPE can be readily
employed in a wide range of contexts.

- In particular, we prove that the Bernoulli randomness
in BOPE plays the regularization role. BOPE implicitly
employs a prior which will be stochastically vanishing
w.r.t T and is entirely different from the prior of theMAP
problem. This regularization role will be crucial to pre-
vent overfitting in probabilistic models when working
with the challenges of extremely sparse data and noisy
data [7], [35], [36]. Existing inference methods do not
have this property.

- We investigate the practical effectiveness of BOPE in
two applications: text analysis and recommender sys-
tem. Extensive experiments show the superior of BOPE
to the state-of-the-art inference methods. In particular,
for short text, BOPE often performs significantly bet-
ter than the other baselines, owing to its regularization
ability.

Organization: This paper is organized as follows: In
Section II, we present the background of MAP problem.
We present BOPE to solve effectively the MAP problem
via Bernoulli randomness and two stochastic bounds in
Section III. Next, in Section IV, we apply BOPE to text
analysis. In Section V, we show the application of BOPE in
recommender systems. Finally, we make the conclusion in
Section VI.

II. RELATED WORK
In Bayesian inference, MAP estimation provides the mode of
the posterior distribution of interest. TheMAP estimation can
be used to obtain a point estimate of an unobserved quantity
on the basis of empirical data. Problem (3) will be non-convex
in cases that the likelihood or prior is not concave.1

1For example, the following distributions will result in non-convex prob-
lems: Beta, Gamma, Weibull, Log logistic, Logit normal, Levy, Generalized
pareto, Erlang, F, Kent, Dagum, Gompertz.

Since our focus in this paper is the non-convex MAP
problem (3), we will survey some closely related literature
and recent developments. From (3), we can consider MAP
estimation as an optimization problem. In some cases, the
MAP problem (3) is a convex problem [4], then it can be
solved well. In addition, in probabilistic models, we usually
study the MAP problem in high dimensions. Therefore, the
difficulty of the MAP problem depends on the objective
function f (x) = logP(D|x) + logP(x). If the densities of
distribution over x and D can be described by some analytic
function, then theMAP estimation problem turns out to be the
maximization of the objective function f (x) = g1(x)+ g2(x)
where g1(x) = logP(D|x) and g2(x) = logP(x). Thus,
we can formulate the problem (3) as a non-convex constrained
optimization problem as follows

x∗ = argmax
x∈�

[f (x) = g1(x)+ g2(x)] (4)

Solving (4) is harder when the objective function f (x)
is non-convex because non-convex optimization problems
usually admit a multimodal structure. Then, common opti-
mizationmethods such as gradient descent or Newtonmethod
may be trapped in poor local optima [37], [38]. In this work,
we are interested in solving the MAP problem (4) in cases
that f (x) is smooth and non-convex. Under that condition,
problem (4) is NP-hard in general [11], [39], [40].

There are some inference methods such as VB, CVB,
CVB0, CGS, CCCP, SMM, PMD, HAMCMC, and OPE [39]
for solving the MAP problem in probabilistic graphical mod-
els. They can be considered as the state-of-the-art inference
methods, yet there still are many drawbacks when going into
details. To our knowledge, we have not seen any theoreti-
cal analysis about how fast VB, CVB, CVB0, and CGS do
inference.While CCCP and SMMare guaranteed to converge
to a stationary point of the inference problem, the conver-
gence rate of both methods is unknown for non-convex MAP
problems. With theoretical proofs, PMD and HAMCMC,
which are both based on sampling to estimate a posterior
distribution, converge at a rate of O(T−1/2) and O(T−1/3),
respectively. We find out that those rates of convergence are
relatively slow compared with OPE. OPE is an online version
of the OFW and has a convergence rate of O(1/T ), where T
denotes the number of iterations. Details of OPE is presented
in Algorithm 1.

Each iteration of OPE requires us to solve a linear program
that is significantly easier than a non-linear problem. Instead
of directly solving the MAP problem (4) with the true objec-
tive function f (x), OPE constructs a sequence of stochastic
functions Ft (x) that approximates to f (x) by alternatively
picking uniformly randomly an ft from {g1(x), g2(x)} at
each iteration t . It is guaranteed that Ft converges to f as
t → ∞ and then MAP problem (4) becomes easily to
solve. Although OPE is easy to implement and has a fast
convergence, it remains some limitations. When inferring the
hidden variable x, we use either likelihood or knowledge we
have known before (prior). This behavior is very natural.
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Algorithm 1 OPE: A General Framework for MAP Estima-
tion
Output: x∗ that maximizes the objective function f (x) =

g1(x)+ g2(x) over the compact domain �.
1: Initialize x1 arbitrary in �
2: for t = 1, 2, . . . ,∞ do
3: Pick ft uniformly from {g1(x), g2(x)}
4: Ft := 2

t

∑t
h=1 fh

5: at := argmaxx∈�〈F ′t (xt ), x〉
6: xt+1 := xt + at−xt

t
7: end for

Algorithm 2 BOPE for Solving the MAP Problem
Input: Bernoulli parameter p ∈ (0, 1)
Output: x∗ that maximizes f (x) = logP(D|x) + logP(x)

over the compact domain �.
1: Initialize x1 arbitrary in �
2: G1(x) := 1

p logP(D|x);G2(x) := 1
1−p logP(x)

3: f l1 := G1(x), f u1 := G2(x)
4: for t = 1, 2, . . . ,T do
5: Pick f lt+1 randomly from {G1(x),G2(x)} according to

the Bernoulli distribution with parameter p, where
P(f lt+1 = G1(x)) = p;P(f lt+1 = G2(x)) = 1− p

6: Lt := 1
t

∑t
h=1 f

l
h

7: alt := argmaxx∈� < L ′t (xt ), x >
8: xlt+1 := xt +

alt−xt
t

9: Pick f ut+1 randomly from {G1(x),G2(x)} according to
the Bernoulli distribution with parameter p, where
P(f ut+1 = G1(x)) = p;P(f ut+1 = G2(x)) = 1− p

10: Ut := 1
t

∑t
h=1 f

u
h

11: aut := argmaxx∈� < U ′t (xt ), x >
12: xut+1 := xt +

aut −xt
t

13: xt+1 := argmaxx∈{xlt+1, xut+1}
f (x)

14: end for

We find out that OPE builds an approximation Ft (x) by
choosing either likelihood or prior with uniform distribution.
In fact, when humans deal with a new sample, one can rely
on likelihood if we have observed enough evidence, or rely
on prior knowledge if we have been lack of evidence. Based
on this natural and simple idea and exploiting the approxima-
tion technique of OPE, we propose the BOPE algorithm that
still preserves all theoretical guarantees of convergence but
more general and flexible by using Bernoulli distribution and
two stochastic bounds.

III. BERNOULLI RANDOMNESS IN MAP ESTIMATION
In this section, we introduce a provably fast algorithm,
namely BOPE for solving theMAP problem (3) whose objec-
tive function f (x) is non-convex and smooth on the compact
domain �. The idea of BOPE is quite simple. The details of
BOPE is presented in Algorithm 2.
Denote

g1(x) = logP(D|x), g2(x) = logP(x)

Assume that g1(x) and g2(x) are continuously differentiable
over the compact domain �. We use Bernoulli distribution
with parameter p ∈ (0, 1) to replace for uniform distribu-
tion in OPE, and we construct two stochastic sequences that
converge to objective function f (x): the lower sequence {Lt }
begun with g1(x), the upper sequence {Ut } begun with g2(x).
Given Bernoulli parameter p ∈ (0, 1), we denote

G1(x) :=
g1(x)
p

, G2(x) :=
g2(x)
1− p

We initialize f l1 := G1(x). For each iteration t, (t =
2, 3, . . . ), we pick f lt randomly from {G1(x), G2(x)} accord-
ing to the Bernoulli distribution with parameter p ∈ (0, 1),
where

P(f lt = G1(x)) = p, P(f lt = G2(x)) = 1− p

We set

Lt :=
1
t

t∑
h=1

f lh

and solve the linear program over �:

alt := argmax
x∈�

〈
L ′t (xt ), x

〉
then update

xlt+1 := xt +
alt − xt

t
Next, we construct the sequence {Ut } similarly to the
sequence {Lt }. We initialize f u1 := G2(x). For each
iteration t (t = 2, 3, . . . ), we pick f ut randomly from
{G1(x), G2(x)} according to the Bernoulli distribution with
parameter p ∈ (0, 1), where

P(f ut = G1(x)) = p , P(f ut = G2(x)) = 1− p

Then, we obtain Ut := 1
t

∑t
h=1 f

u
h and solve the linear

program over �:

aut := argmax
x∈�

〈
U ′t (xt ), x

〉
and update

xut+1 := xt +
aut − xt

t
It is easy to verify that Lt and Ut are average of all sample

functions drawn until the current step. So, they are both
guaranteed to converge to f (x) as t → ∞, which will be
shown in the proof of Theorem 1 in Appendix A. We also see
that the Bernoulli parameter p controls how much likelihood
and prior contribute to Lt and Ut . At each iteration, using
both two stochastic sequences {Lt } and {Ut } gives us more
information about f (x), so that we can get chances to faster
reach a maximum of f (x). We obtain {xlt } from the sequence
{Lt }, and {xut } from {Ut }. At each iteration, based on the
greedy approach, we always compare two values of f (xut )
and f (xlt ), then take the point that has the highest value of
objective f (x) as

xt := argmaxx∈{xut ,xlt }f (x)
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BOPE uses Bernoulli distribution which is more general
than uniform distribution and creates three sequences {xut },
{xlt } and {xt } depending on each other. The following the-
orem shows some properties of BOPE. Its proof appears in
Appendix A.
Theorem 1 (Convergence): Assume that g1(x) and g2(x)

are continuously differentiable over the compact domain �.
Given the Bernoulli parameter p ∈ (0, 1), with probability
one, the sequence {xt } obtained by Algorithm 2, converges to
a local maximal/stationary point x∗ of f (x) at rate of O(1/T )
where T denotes the number of iterations.

Comparing with other methods such as CCCP and SMM,
Algorithm 2 has many preferable properties. First, the con-
vergence rate of CCCP and SMM is unknown for non-convex
problems. Second, while each iteration of SMM requires us
to solve a convex problem, that of CCCP has to solve a (non-
linear) equation system which is expensive and non-trivial in
many cases. Note that each iteration of Algorithm 2 requires
us to solve the linear programs which are significantly easier
than non-linear problems. Therefore, Algorithm 2 promises
to be much more efficient than CCCP and SMM. We have
shown that BOPE and OPE both converge at a rate of
O(1/T ) while PMC converges at a rate of O(T−1/2) [33]
and HAMCMC converges at a rate of O(T−1/3) [34] where
T is the number of iterations. We emphasize that by using
Bernoulli randomness, BOPE is more general and flexible
than OPE, when varying the value of Bernoulli parameter p,
we control the contribution of each information element to
the learning process, so we can obtain variants of BOPE.

Overfitting generally occurs when a model is excessively
complex, such as having too many parameters relative to
the number of observations. When the model does really
well on the training data but really bad on real data, thus,
the model cannot be generalized. In statistics and machine
learning, overfitting occurs when a statistical model describes
random error or noise instead of the underlying relationship.
Overfitting is a general problem that plagues all machine
learning methods. Regularization [41] is a well-known tech-
nique to solve ill-posed problems and to prevent overfitting of
a learning system. Another property of BOPE is that there is
an implicit regularization when solving the MAP problem.
This is an outstanding advantage of BOPE compared with
previous methods. The idea is to add a regularization term
R(x) to a loss function loss(D, x):

x∗ = argmin
x
[loss(D, x)+ λR(x)]

where λ is a parameter which controls the strength of regular-
ization. In MAP (3), the prior term− logP(x) naturally plays
as regularization:

x∗ = argmax
x∈�

[logP(D|x)+ logP(x)]

= argmin
x∈�

[− logP(D|x)− logP(x)]

Surprisingly, there is another regularization term when
BOPE solves problem (3).

TABLE 1. Theoretical comparison of inference methods. T denotes the
number of iterations, and ‘−’ denotes ‘unknown’.

Theorem 2 (Regularization): Consider the BOPE algo-
rithm for maximizing f (x) = g1(x)+ g2(x), given parameter
p ∈ (0, 1). At each iteration t , BOPE tries to maximize

f (x)+ Rt (g1, g2, p)

where Rt (g1, g2, p) = h(t, p)
(
1
pg1(x)−

1
1−pg2(x)

)
satisfies

h(t, p)→ 0 as t →∞.
The proof of this theorem appears in Appendix B. This the-

orem essentially says that the regularization term is stochasti-
cally composed from the objective function and is vanishing
as more iterations are done. Furthermore, parameter p implic-
itly controls the strength of regularization. Smaller p basically
implies slower vanishing of the regularization term.

Table 1 summarizes some properties of different infer-
ence methods for probabilistic models. Comparing with other
approaches, BOPE has many preferable properties. Among
those, implicit regularization is a big advantage of BOPE.

In the next sections, we present the efficiency of BOPE via
its application for text analysis and recommender systems.

IV. CASE STUDY 1: APPLICATION TO TEXT ANALYSIS
In this section, for evaluating the efficiency of BOPE on
the experimental aspect, we adopt BOPE to solve the MAP
problem in topic models, which are powerful tools for text
mining [32], [42], [42]–[50]. We will see that the regular-
ization ability in BOPE plays a significant role to prevent
overfitting whenworkingwith short text, which is an example
of sparse data.

The following notations will be used throughout this
section.

V: A vocabulary of V terms, often written as {1, 2, . . . ,V }
d: A document represented as a count vector,
d = (d1, . . . , dV ), where dj is the frequency of term j.
nd : The length of d , nd =

∑
j dj.

βk : A topic which is a distribution over the vocabulary V ,

βk = (βk1, . . . , βkV )T , βkν ≥ 0,
V∑
ν=1

βkν = 1.

1K : The unit simplex

1K = {x ∈ RK
: x ≥ 0,

K∑
k=1

xk = 1}

1K : The interior of unit simplex 1K .
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FIGURE 1. Graphical model representation of LDA.

A. THE MAP PROBLEM IN TOPIC MODELS
Topic modeling is a potential approach to help organiz-
ing, searching and understanding vast amounts of infor-
mation. Topic modeling provides a framework to model
high-dimensional sparse data. Latent Dirichlet allocation
(LDA) [30] is a generative model for modeling texts and dis-
crete data. LDA has been successfully applied in a wide range
of areas including text modeling [42], [43], bioinformatics
[44], [45], history [32], [46], [47], politics [42], [48], and
psychology [49].

LDA often assumes that a corpus is composed from
K topics, β1, . . . ,βK , each of which is a sample from a
V -dimensional Dirichlet distribution, Dirichlet(η). Figure 1
represents the graphical model of LDA.

Each document d is a mixture of those topics and is
assumed to arise from the following generative process:

1) Draw θd |α ∼ Dirichlet(α)
2) For the nth word of d:

• draw topic index zdn|θd ∼ Multinomial(θd )
• draw word wdn|zdn,β ∼ Multinomial(βzdn )

Each topic mixture θd = (θ1, . . . , θK ) represents the contri-
butions of topics to document d while βkj shows the contribu-
tion of term j to topic k . Note that θd ∈ 1K , βk ∈ 1V , ∀k .
Both θd and zd are unobserved variables and are local for each
document. LDA further assumes that θ and β are samples of
Dirichlet distributions, more specifically, θd ∼ Dirichlet(α)
and βk ∼ Dirichlet(η) where α and η are hyper-parameters.
Originally LDA is applied to model the corpus of text

documents in which each document is assumed as a random
mixture of topics and a topic is a distribution over words.
The learning problem is finding the topic distribution of
each document and the distribution of words in topics. When
learning these parameters, we have to deal with an inference
step which is to find the topic distribution of a document
with the known distributions of words in topics. One of the
core issues in topic models is posterior inference. It often
refers to the problem of estimating the posterior distribution
of latent variables for individual documents d such as topic
proportion θ . This problem is considered bymany researchers
in recent years and various algorithms such as VB, CVB,
CVB0, CGS, and OPE.

The problem of posterior inference for each document d ,
given a model {β, α}, is to estimate the full joint distribution
P(zd , θd , d|β, α). Direct estimation of this distribution is a
NP-hard in the worst case [11]. Hence existing inference
approaches use different schemes. Somemethods such asVB,
CVB, CVB0 try to estimate the distribution by maximizing a

lower bound of the likelihood P(d|β, α), whereas CGS tries
to estimate P(z|d,β, α). They are being popularly used in
topic modeling, but we have not seen any theoretical analysis
about how fast they do inference for individual documents.
Other good candidates for posterior inference includes CCCP,
SMM, OFW, and Threshold Linear Inverse (TLI) [51]. One
might employ CCCP and SMM to do inference in topic
models. Those two algorithms are guaranteed to converge to a
stationary point of the inference problem. However, the rates
of convergence of CCCP and SMMare not clearly analyzed in
non-convex circumstances such as inferences in topicmodels.

Unlike the above methods, we approach in a different
way, that is MAP. We consider the MAP estimation of topic
mixture for a given document d:

θ∗ = arg max
θ∈1K

P(θ , d|β, α) = arg max
θ∈1K

P(d|θ ,β)P(θ |α) (5)

According to [39], the MAP problem (5) is equivalent to the
following:

θ∗ = arg max
θ∈1K

[
∑
j

dj log
K∑
k=1

θkβkj + (α − 1)
K∑
k=1

log θk ] (6)

It is shown that this problem is NP-hard in the worst case
when α < 1 by the authors of [11]. In the case of α ≥ 1, one
can easily show that the problem (6) is concave optimization,
therefore it can be solved in polynomial time. Unfortunately,
in practice LDA, the parameter α is often small, says α < 1,
which causes (6) to be non-concave optimization. In this
paper, we consider problem (6) in case hyper-parameter
α < 1. We see that problem (6) has a form as problem (4)
when we denote

g1(θ ) :=
∑
j

dj log
K∑
k=1

θkβkj,

g2(θ ) := (1− α)
K∑
k=1

log θk

We also see that g1(θ ) < 0 , g2(θ ) > 0 and

g1(θ ) < f (θ ) = g1(θ )+ g2(θ ) < g2(θ )

then we can design upper and lower bounds of the objective
function f (θ ) and we can apply BOPE algorithm for solv-
ing well the problem (6). We further show in this section
the simplicity of using BOPE for designing fast learning
algorithm for LDA. More specifically, based on Online-OPE
[39], we design Online-BOPE which learns LDA from large
corpora in an online fashion. Details of Online-BOPE is
presented in Algorithm 3.

This algorithm employs BOPE to do MAP inference for
individual documents, and the online scheme [37], [52] to
infer global variables (topics). Hence, the stochastic nature
appears in both local and global inference phases. Note that
the MAP inference of local variables by BOPE has a theoreti-
cal guarantee on fast convergence rate. Such a property might
help Online-BOPE, the new large-scale learning algorithm,
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Algorithm 3Online-BOPE for Learning LDA FromMassive
Data
Input: training data C withD documentsK , α, η, τ > 0, κ ∈

(0.5, 1]
Output: λ
1: Initialize λ0 randomly
2: for t = 1, . . . ,∞ do
3: Sample a set Ct consisting of S documents.
4: Use BOPE algorithm to do posterior inference for each

document d ∈ Ct , given the global variable β t−1 ∝
λt−1 in the last step, to get topic mixture θd . Then
compute φd as:

φdjk ∝ θdkβkj

5: For each k ∈ {1, 2, . . . ,K }, form an intermediate
global variable λ̂k for Ct by

λ̂kj = η +
D
S

∑
d∈Ct

djφdjk

6: Update the global variable by, where ρt = (t + τ )−κ ,

λt := (1− ρt )λt−1 + ρt λ̂

7: end for

be more attractive than existing ones. We do experiments
with Online-BOPE on five datasets including long texts and
short texts and we compared its results with other inference
methods such as VB, CVB0, CGS, and OPE.

B. EMPIRICAL EVALUATION
This section is devoted to investigating practical behaviors of
BOPE, and how useful it is whenBOPE is employed to design
a new algorithm for learning topic models at large scales.
To this end, we take the following methods, and performance
measures into investigation.
Inference Methods: VB, CVB0, CGS, OPE, and BOPE

which is our new inference algorithm. CVB0 and CGS have
been observing to work best by several previous studies [32],
[53], [54]. Therefore, they can be considered as the state-of-
the-art inference methods.

In this section, we carry out extensive experiments to inves-
tigate the effectiveness of Online-BOPE when comparing
with variety of stochastic learning methods: Online-VB [52],
Online-CVB0 [55], Online-CGS [32], and Online-OPE [39].
Online-CGS is a hybrid algorithm, for which CGS is used to
estimate the distribution of local variables (z) in a document,
and VB is used to estimate the distribution of global variables
(λ). Online-CVB0 is an online version of the batch algorithm
in [53], where inference for a document is done by CVB0.
Online-VB is a stochastic algorithm for which inference for
a document is done by VB.
Data for Experiments: Probabilistic topic models have

been proven to be effective tools for uncovering the hidden

TABLE 2. Description of five datasets for our experiments.

topics of textual corpora. While topic models such as LDA
have broad success on news articles and academic papers
[30]; they often suffer from bad performance on short texts.
Unlike long texts (e.g. carefully edited articles, academic
papers), short texts such as mobile short message, instant
message, news title, online chat record, blog comment, news
comment, etc are often characterized by a very short length,
a large vocabulary, a massive size, and noises. The short texts
consist of from a dozen words to a few sentences and they do
not provide enough word co-occurrence or shared context for
a good similarity measure. Short and noisy data poses severe
challenges for modeling, and thus traditional methods for
learning topic models do not work well or face severe overfit-
ting [7]. Thus, in order to compare BOPE to other inference
methods in learning LDA, we use two types of datasets which
are long texts and short texts in our experiments. The detailed
description for each dataset is shown in Table 2.
• Long texts: We use two large datasets of long texts for
evaluation: PubMed dataset consists of 330,000 articles
from the PubMed central and New York Times dataset
consists of 300,000 news.2

• Short texts: We use three large datasets of short
texts for evaluation: Yahoo Questions crawled from
answers.yahoo.com, each document is a question;
Tweets from Twitter (twitter.com), each document is
the text content of a tweet; NYT-Titles from The New
York Times (www.nytimes.com), each document is the
title of an article [56]. These datasets are preprocessed
by tokenizing, stemming, removing stop-words, remov-
ing low-frequency words (appear in less than 3 docu-
ments) and removing extremely short documents (less
than 3 words).

The shortness of texts poses various difficulties [51], [56],
[57] because of its natural characters such as sparseness,
large-scale, immediacy, non-standardization [7]. It is difficult
for traditionalmethods to deal with short textsmainly because
too limited words in the short text cannot represent the feature
space and the relationship between words and documents.
Therefore, the usage of both long and short texts in our
investigation would show more insights into the performance
of different methods. For each corpus, we set aside randomly
1, 000 documents for testing and used the remaining for
learning.
Parameter Settings:
• Model parameters: We set the number of topics K =
100, the hyper-parameters α = 1

K and the topic Dirichlet

2The datasets were taken from http://archive.ics.uci.edu/ml/datasets
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parameter η = 1
K . These parameters are commonly

used in topic models. Such a choice of (α, η) has been
observed to work well in many previous studies [52],
[55], [58].

• Inference parameters: We choose Bernoulli parameter
p ∈ {0.1, 0.2, . . . , 0.8, 0.9}. At most 50 iterations were
allowed for BOPE, OPE and VB to do inference. We ter-
minated VB if the relative improvement of the lower
bound on likelihood is not better than 10−4. 50 samples
were used in CGS for which the first 25 were discarded
and the remaining were used to approximate the poste-
rior distribution. 50 iterations were used to do inference
in CVB0, in which the first 25 iterations were burned in.
Those number of samples/iterations are often enough to
get a good inference solution, according to [32], [55].

• Learning parameters: We set the mini-batch size S =
|Ct | = 5, 000, κ = 0.9, τ = 1. This choice of
learning parameters has been found to result in com-
petitive performance of Online-VB and Online-CVB0
[52], [55]. Therefore, it was used in our investigation
to avoid possible bias. We used default values for some
other parameters in Online-CVB0.

Performance Measures:We have used two measures: Log
Predictive Probability (LPP) [32] and Normalised Pointwise
Mutual Information (NPMI) [59]. Predictive probability mea-
sures the predictiveness and generalization of a model to new
data, while NPMI evaluates semantics quality of an individual
topic. Details of LPP and NPMI are presented in Appendix D
and Appendix E.

Because we use BOPE as an inference method in learning
LDA, then we do comparing it with other inference methods
via applying to design large-scale learning methods. To avoid
randomness, the learning methods for each dataset are run
five times and reported their average results.

1) THE EFFECT OF BERNOULLI PARAMETER p
In this experiment, we investigate that how important the
value of Bernoulli parameter p is in BOPE. Because p ∈
(0, 1), so we choose p respectively in {0.1, 0.2, . . . , 0.9}, then
run Online-BOPE in five datasets. We find out that p affects
very much in the performance in terms of both measures
and on both short texts and long texts. Firstly, we report
the performance of Online-BOPE on New York Times and
PubMed datasets in Figure 2.
Overall, the value of Bernoulli parameter p hightly effects

the performance in terms of both measures, especially on
NPMI. More specific, the difference between the highest
value and the smallest value in NPMI with same batches of
data varying from 0.5 to 1. In addtion, it is showed that the
value of Bernoulli parameter p affects to Online-BOPE on
PubMed more than on New York Times in LPP, which can be
explained by the effect of document length in each dataset.
Average document length in PubMed is shorter than that of
New York Times, thus it tends to reduce contribution of the
likelihood part in the MAP problem.

FIGURE 2. Results of Online-BOPE with different value of Bernoulli
parameter p on long text datasets with LPP and NPMI measures. Higher is
better.

FIGURE 3. Results of Online-BOPE with different value of Bernoulli
parameter p with LPP and NPMI measures on short-text datasets. Higher
is better.

As previous studies have shown [7], [39], LDA does not
work well with short texts, even occurs over-fitting. So,
we want to point out that our algorithm can help LDA work-
ing well on short texts such as NYT-Titles, Twitter tweets and
Yahoo question datasets.

Via Figure 3, we show that Bernoulli parameter p has a
great impact on the effectiveness of Online-BOPE, especially
on short texts. Experimenting on short texts such as Nytimes
titles, Twitter tweets and Yahoo question, BOPE gives higher
results when p tends to 1. This is a suggestion for selecting
parameter p in the BOPE.

2) PERFORMANCE OF THE LEARNING METHODS
LDA can be fit to large datasets of text by using stochastic
optimization [43], [52]. However, it fails in the face of large
vocabularies and short texts. We evaluate the efficiency of
BOPE for solving the MAP problem in topic models via
results of Online-BOPE for learning LDA on LPP and NPMI
measures and comparing with other learning algorithms such
as Online-VB, Online-CVB0, Online-CGS, and Online-OPE.
All of the experiments have done on both types of datasets:
short texts and long texts.

Long texts: In this experiment, we carry out Online-BOPE
in comparing with Online-VB, Online-CVB0, Online-CGS,
and Online-OPE on long texts (New York Times and
PubMed) with the results shown in Figure 4.
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FIGURE 4. Results of the stochastic learning methods on New York Times
and PubMed. Higher is better. We find out that Online-BOPE gives the
best performance.

FIGURE 5. Results of the learning methods on short texts: NYT-Titles,
Twitter, and Yahoo. We find out that Online-BOPE has the best
performance.

We observe that value of LPP and NPMI of all learning
methods increase according to the number of documents
learned. The explanation for this trend is that the LDA model
is often consistent with long texts. However, there is still a
huge difference between Online-BOPE and other learning
methods, especially on PubMed. This explains that BOPE
is especially suitable for documents made the likelihood and
prior are not too different, then Bernoulli parameter p controls
the ratio of likelihood and prior in the objective function of
MAP problem.

Short texts: We investigate the effectiveness of Online-
BOPE when working on short texts such as Twitter,
NYT-Titles, Yahoo question (see Figure 5). We show that
BOPE helping Online-BOPE better than competing methods
when working on short texts in some aspects: the predictive-
ness, generalization and preventing overfitting.

We observe the overfitting of Online-VB and Online-
CVB0 in Figure 5. LPP and NPMI measures of Online-VB
and Online-CVB0 decrease according to the number of
documents learned while LPP and NPMI of Online-CGS,
Online-OPE and Online-BOPE sill increase according to the
number of documents learned. Thus, it means that the general
ability of the model has reduced when using Online-VB
and Online-CVB on three short text datasets, especially
NYT-Titles and Yahoo datasets which are very short.

Next, we continue to do experiments on short texts and
record the experimental results of learning methods after five

FIGURE 6. Results of the learning methods on short texts: NYT-Titles,
Twitter, and Yahoo after five epochs. We find out that Online-BOPE gives
the best performance.

epochs. For each datasets, we have done Online-BOPE with
Bernoulli parameter p ∈ {0.1, 0.2, . . . , 0.9} then recorded
the best results (Online-BOPE-max) and the worst results
(Online-BOPE-min) and compared with Online-VB, Online-
CVB0, and Online-CGS (see Figure 6).

We find out that the quality of Online-BOPE is still good
after five epochs. However, the over-fitting of Online-VB and
Online-CVB0 is more and more, especially on NYT-Titles
and Yahoo datasets. It is clear that over-fitting the LDAmodel
depends on the length of documents and Online-VB and
Online-CVB0 do not work well on short texts. It can be seen
that the length of each document of NYT-Titles and Yahoo is
shorter than Twitter. Thus, the quality of the models learned
from NYT-Titles or Yahoo by Online-CVB0 and Online-VB
decline significantly during the learning process.

V. CASE STUDY 2: APPLICATION TO RECOMMENDER
SYSTEMS
In this section, we investigate the application of BOPE for
solving the MAP problem in Collaborative Topic Model
for Poisson distributed ratings (CTMP) model [8] which is
used for recommendation systems. We do not try to compete
with state-of-the-art models for recommendation systems, but
instead show that the use of BOPE would be more beneficial
than existing inference methods.

A. COLLABORATIVE TOPIC MODEL FOR POISSON
DISTRIBUTED RATINGS
We will use the following notations in this section:

• U , J : number of users and items respectively.
• wj = {cνj }

V
ν=1: bag-of-word representation for item j

where cνj denotes the frequency of word ν in the con-
tent/description of item j.

• V : vocabulary size of item content.
• D = {ruj, wj}

U ,J
u=1,j=1: dataset of implicit ratings ruj and

item content (wj). Ratings are represented by a matrix
R = {ruj}U×J , indicating the rating that user u had given
to item j. Each rating ruj can take value 1 (indicating that
user u ‘‘liked’’ the item j) or 0 (indicating that user u
‘‘disliked’’ or simply did not know about item j).
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FIGURE 7. Collaborative topic model for poisson distributed
ratings (CTMP) model.

• K : the number of topics.
• β = {βkν}K×V : topic representation. Each topic k is a
distribution on the vocabulary, and it is represented by
vector βk = {βkν}V×1 (

∑V
ν=1 βkν = 1, βkν ≥ 0)

• θ1:j: item content representation at topic-level. The vec-
tor θ j = {θjk}K×1 is a distribution on topics (

∑K
k=1 θjk =

1, θjk ≥ 0), and is another representation of item content
in the topic space.

Recommender systems often use feedbacks from users
to make recommendations of items. The feedbacks may be
explicitly or implicitly provided by users. Some systems
also use the textual content, such as a product’s description
or news’ content, to further understand the user’s prefer-
ence and then make an accurate recommendation. Collab-
orative filtering based systems mainly use users’ feedbacks
alone, whereas a hybrid system can use both feedbacks and
contents. CTMP is a hybrid and interpretable probabilistic
content-based collaborative filtering model for recommender
systems. The model enables both content representation by
admixture topicmodeling, and computational efficiency from
Poisson factorization living together under one tightly cou-
pled probabilistic model, thus addressing the limitation of
previous models such as CTR [60] and CTPF [61].

The graphical model of CTMP is represented in Figure 7.
The full generative process of CTMP is as follows

1) For each user u, draw ηu where ηuk ∼ Gamma(e, f )
2) For each item j:

a) Draw topic proportion θ j ∼ Dirichlet(α)
b) For the n-th word of item j:

i) Draw topic index zjn ∼ Categorical(θ j)
ii) Draw word wjn ∼ Categorical(βzjn)

c) Draw latent factor µj ∼ N (θ j, λ−1IK )
3) For each user-item pair (u, j), draw ruj ∼ Poisson(ηTu µj)

Learning CTMP: Exact computation of the full posterior of
latent variables

P(θ ,µ, η|D, α, β, λ, e, f ) =
P(θ ,µ, η,D|α, β, λ, e, f )

P(D|α, β, λ, e, f )
(7)

is intractable, thus exact inference is not possible. There are
two main approaches to the problem: point estimation by

Algorithm 4 Learning CTMP by Coordinate Ascent
Input: Observed data w, r , Bernoulli parameter p ∈ (0, 1)

and hyper-parameters α, λ, e, f .
Output: Estimates θ ,µ, φuj, shpuk , rteuk and β.
1: Initialize θ, β by their respective estimates from LDA
2: repeat
3: for j = 1 : J do
4: Update θ j by BOPE algorithm
5: Update µj as in [8]
6: end for
7: for u = 1 : U , k = 1 : K do
8: Update variational parameters as Table 2 in [8]
9: φujk ∝ exp[logµjk + ψ(shpuk ) − log(rteuk )] ∀j if

ruj > 0
10: shpuk ← e+

∑
j rujφuj

11: rteuk ← f +
∑

j ruj
12: βkν ∝

∑
j c
ν
j θjk ,∀k, ν

13: end for
14: until convergence

MAP estimation, or full Bayesian learning using approximate
methods such as MCMC sampling and variational methods
[1]. In learning CTMP, we have to learn θ j. According to [8],
we have to learn the point estimation of local topic proportion
θ j that maximizes

g(θ j) = (α − 1)
∑
k

log θjk +
∑
ν

cνj log

(∑
k

θjkβkν

)

−
λ

2
‖θ j − µj‖

2
2 (8)

We find out that objective function g(θ j) is non-convex when
α < 1. The authors of [8] used OPE [39] algorithm to find the
optimum θ j. At each iteration, OPE tries to direct the solution
of the optimization problem to the closed neighbors of the
vertices in the convex hull of input domain. OPE provides
considerable advantage to computation, with fast conver-
gence rate O(1/T ) and proven quality bound. We denote

g1 = (α − 1)
∑
k

log θjk +
∑
ν

cνj log

(∑
k

θjkβkν

)

g2 = −
λ

2
‖θj − µj‖

2
2

then objective function g(θj) in (8) be rewritten as g = g1 +
g2. As mentioned before, we find out that BOPE has many
advantages overcome to OPE. Thus, we can apply BOPE for
learning θ j in CTMP. Details for learning CTMP is presented
in Algorithm 4.

B. EXPERIMENTAL EVALUATION
We know that predictive performance of a recommender sys-
tem is measured on the ability to recommend in-matrix items
and out-matrix items (also called cold-items). In-items are
those containing information from user ratings; cold-items,
on the other hand, do not have such information. The tasks of
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TABLE 3. Statistics of the experimented datasets. Sparsity indicates
proportion of the entries that do not have any positive ratings in each
rating matrix R.

recommending items which are all in-items are referred to as
in-matrix prediction, and the tasks of recommending both in-
and cold-items are called out-of-matrix prediction.

1) EVALUATION MEASURES
Both in-matrix and out-of-matrix prediction are evaluated by
precision and recall for all users in test set, measured from
top−M recommendation. Top−M recommendation contains
items whose predicted ratings are among the M highest. For
convenience, precision- and recall-at-M are abbreviated as
prec@M and rec@M respectively. By definition

prec@M =
1
U

∑
u

M c
u

M

rec@M =
1
U

∑
u

M c
u

Mu

where M c
u is the number of correct items that appear in the

top−M recommendation for user u, and Mu is the num-
ber of items that user u had rated positive. We do 5−fold
cross-validation and report the average precision and recall
over all users.

2) SETTING OF HYPER-PARAMETERS
We set the Gamma prior parameters e = f = 0.3.

3) DATA FOR EXPERIMENTS
In order to investigate application of BOPE in CTMP model,
we do many experiments on two datasets from the respective
service providers as follows
• CiteULike3 dataset: a service for managing scientific
references. Ratings indicate if an article is in the user
libraries.

• MovieLens 1M4 dataset: User-movie rating dataset.
We transformed explicit data into implicit data by let
all 4− and 5−star ratings be in ‘‘user like this’’ group
(i.e. ruj = 1)

More details of the processed datasets are in Table 3.

4) EXPERIMENTAL RESULTS
We find out that the Dirichlet prior parameter α, offset pre-
cision λ and the number of topics K are the parameters of
CTMP which have effects on CTMP. Thus, we consider the
effectiveness of BOPE in CTMP via investigating the effects
of Dirichlet prior parameter α, offset precision λ, and the

3This dataset was taken from http://www.citeulike.org/faq/data.adp
4This dataset was taken from https://grouplens.org/datasets/movielens/

1m/

TABLE 4. Some experimental scenarios. Note that CTMP depends on the
Dirichlet prior parameter α, offset precision λ and the number of topics K .

FIGURE 8. Influence of Dirichlet prior parameter α to CTMP model when
using OPE and BOPE as inference methods on CiteULike dataset. We fix
offset precision λ = 1,000, the number of topics K = 100 and Bernoulli
parameter p = 0.9. Higher is better.

FIGURE 9. Influence of Dirichlet prior parameter α to CTMP model when
using OPE and BOPE as inference methods on CiteULike. We fix offset
precision λ = 1,000, the number of topics K = 100 and Bernoulli
parameter p = 0.7. Higher is better.

number of topics K to CTMP. In this section, we evaluate
the BOPE in comparison with OPE when using to learn the
parameter θ j in the CTMP, and we denote the CTMP model
using BOPE as CTMP-BOPE and denote CTMPmodel using
OPE as CTMP-OPE. Details of experimental scenarios are
shown in Table 4.
Firstly, we fix offset precision λ = 1, 000, the number

of topics K = 100 then change Dirichlet prior parameter
α ∈ {1, 0.1, 0.01, 0.001, 0.0001}. Experimental results are
presented from Figure 8 to 11. Parameter α helps to control
the sparsity of topic mixture θ for each document. CTMP
is stable when varying α ∈ {0.1; 0.01; 0.001; 0.0001} on
two datasets. However, we find out that with Dirichlet prior
parameter α = 1, offset precision λ = 1, 000 and the number
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FIGURE 10. Influence of Dirichlet prior parameter α to CTMP model when
using OPE and BOPE as inference methods on MovieLens 1M. We fix
offset precision λ = 1,000, the number of topics K = 100 and Bernoulli
parameter p = 0.9. Higher is better.

FIGURE 11. Influence of Dirichlet prior parameter α to CTMP model when
using OPE and BOPE as inference methods on MovieLens 1M. We fix
offset precision λ = 1,000, the number of topics K = 100 and Bernoulli
parameter p = 0.7. Higher is better.

FIGURE 12. Influence of offset precision λ to CTMP model when using
OPE and BOPE as inference methods on CiteULike. We fix Dirichlet prior
parameter α = 0.01, the number of topics K = 100, and Bernoulli
parameter p = 0.9. Higher is better.

of topics K = 100, CTMP-BOPE is better than CTMP-OPE
on both precision and recall measures and on two datasets.
This is proof of the effectiveness of BOPE in recommendation
system applications.

Secondly, we fix Dirichlet prior parameter α = 0.01,
the number of topics K = 100 and choose Bernoulli
parameter p = 0.9, then change offset precision λ ∈

{1; 10; 1, 000; 10, 000}. These experimental results are pre-
sented in Figure 12 and Figure 13.

FIGURE 13. Influence of offset precision λ to CTMP model when using
OPE and BOPE as inference methods on MovieLens 1M. We fix Dirichlet
prior parameter α = 0.01, the number of topics K = 100 and Bernoulli
parameter p = 0.9. Higher is better.

FIGURE 14. Influence of offset precision λ to CTMP model when using
OPE and BOPE as inference methods on CiteULike. We fix Dirichlet prior
parameter α = 1, the number of topics K = 100 and Bernoulli parameter
p = 0.7. Higher is better.

FIGURE 15. Influence of offset precision λ to CTMP model when using
OPE and BOPE as inference methods on MovieLens 1M. We fix Dirichlet
prior parameter α = 1, the number of topics K = 100 and Bernoulli
parameter p = 0.7. Higher is better.

We fix Dirichlet prior parameter α = 1, the number of top-
ics K = 100 and choose Bernoulli parameter p = 0.7, then
change offset precision λ ∈ {1; 10; 100; 1, 000; 10, 000}.
These experimental results are presented in Figure 14 and
Figure 15.
Note that λ is a parameter for the fluctuation ofµ around θ .

Via Figure 14 and Figure 15, we see that CTMP-BOPE gives
better results than CTMP-OPEwith setting the Dirichlet prior
parameter α = 1 and number of topics K = 100.
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FIGURE 16. Influence of number of topics K to CTMP model when using
OPE and BOPE as inference methods on CiteULike dataset. We fix
Dirichlet prior parameter α = 0.01, the number of topics K = 100 and
Bernoulli parameter p = 0.9. Higher is better.

FIGURE 17. Influence of number of topics K to CTMP model when using
OPE and BOPE as inference methods on MovieLens 1M. We fix Dirichlet
prior parameter α = 0.01, the number of topics K = 100 and Bernoulli
parameter p = 0.9. Higher is better.

FIGURE 18. Influence of number of topics K to CTMP model when using
OPE and BOPE as inference methods on CiteULike dataset. We fix
Dirichlet prior parameter α = 1, the number of topics K = 100 and
Bernoulli parameter p = 0.7. Higher is better.

Thirdly, to investigate the influence of number of topics
K in CTMP, we fix the Dirichlet prior parameter α = 0.01,
offset precision λ = 1, 000 and choose Bernoulli param-
eter p = 0.9, then change the number of topics K ∈

{50; 100; 150; 200}. These experimental results are presented
in Figure 16 and Figure 17.

P We fix the Dirichlet prior parameter α = 1, offset
precision λ = 1, 000 and choose Bernoulli parame-
ter p = 0.7, then change the number of topics K ∈

{50; 100; 150; 200; 250}. These experimental results are pre-
sented in Figure 18 and 19.

FIGURE 19. Influence of number of topics K to CTMP model when using
OPE and BOPE as inference methods on MovieLens 1M. We fix Dirichlet
prior parameter α = 1, the number of topics K = 100 and Bernoulli
parameter p = 0.7. Higher is better.

The influence of K is more slightly obvious than α and
λ in CTMP. The number of hidden topics K expresses
the complex of model, and it depends on datasets. Via
Figures 16, 17, 18 and 19, we see that CTMP-BOPE is better
than CTMP-OPE especially when number of hidden topics
K = 200 or K = 250 and on CiteULike dataset.

We find out that the CTMP-BOPE generally performs bet-
ter than CTMP-OPE on both precision and recall measures.
Thus, this is an intuitive proof of the attractive properties of
using Bernoulli distribution and two stochastic bounds over
previous methods.

VI. CONCLUSION
In this paper, we have discussed how the MAP problem
in probability models can be solved efficiently via using
BOPE which is a new stochastic optimization algorithm
using Bernoulli randomness. In theory, BOPE has a fast
convergence rate and an implicit regularization role which
are the most important characters among existing state-of-
the-art inference methods. In practice, we have demonstrated
that BOPE is successful when applied to text analysis and
recommender systems. We emphasize that the parameter p ∈
(0, 1) in BOPE is a flexibleway to deal with different datasets,
especially short texts and as well as prevent overfitting.
In conclusion, based on theoretical analysis and extensive
experiments, we confirm that BOPE is a good candidate for
solving the non-convex MAP problem.

APPENDIX A
PROOF OF THEOREM 1
The objective function f (x) is non-convex. Different from
convex optimization, the criterion used for the conver-
gence analysis is important in non-convex optimization.
For unconstrained optimization problems, the gradient norm
‖∇f (x)‖ is typically used to measure convergence, because
‖∇f (x)‖ → 0 captures convergence to a stationary point.
However, this criterion can not be used for constrained opti-
mization problems. Instead, we use the ‘‘Frank-Wolfe gap’’
criterion in [25] for proof of Theorem 1.

VOLUME 8, 2020 127829



X. Bui et al.: MAP Estimation With Bernoulli Randomness, and Its Application to Text Analysis

We denote

G1(x) :=
g1(x)
p

, G2(x) :=
g2(x)
1− p

Then, we see that

f (x) = g1(x)+ g2(x) = pG1(x)+ (1− p)G2(x)

The first, we consider the sequence {Ut }.
We set f u1 := G2(x). For each iteration t (t = 2, 3, . . . ),

we pick f ut randomly from {G1(x),G2(x)} according to the
Bernoulli distribution with parameter p ∈ (0, 1), where

{P(f ut = G1(x)) = p;P(f ut = G2(x)) = 1− p}

and we have Ut := 1
t

∑t
h=1 f

u
h .

Let at and bt = t−at be the number of times that we have
already pickedG1(x) andG2(x) respectively after t iterations.
Thus, we have

Ut =
1
t
(atG1 + (t − at )G2) (9)

Denote St = at − tp, we obtain

Ut−f =
St
t
(G1 − G2) (10)

U ′t − f
′
=

St
t
(G′1 − G

′

2) (11)

We see that Stt → 0 as t →∞with probability 1. Combining
this with (10), we conclude that the sequence Ut → f with
probability 1, Also due to (11), the derivative sequenceU ′t →
f ′ as t →+∞. The convergence holds for any x ∈ �.
Consider

〈U ′t (xt ),
aut − xt

t
〉 = 〈U ′t (xt )− f

′(xt ),
aut − xt

t
〉

+〈f ′(xt ),
aut − xt

t
〉

=
St
t2
〈G′1(xt )− G

′

2(xt ), a
u
t − xt 〉

+〈f ′(xt ),
aut − xt

t
〉

Note that g1 and g2 are Lipschitz continuous on �. Hence
there exists a constant L such that

〈f ′(z), y− z〉 ≤ f (y)− f (z)+ L‖y− z‖2, ∀ y, z ∈ �

We have

〈f ′(xt ),
aut − xt

t
〉 = 〈f ′(xt ), xut+1 − xt 〉

≤ f (xut+1)− f (xt )+ L‖x
u
t+1 − xt‖

2

= f (xut+1)− f (xt )+ L‖
aut − xt

t
‖
2

We have xt+1 := argmaxx∈{xut+1,xlt+1}
f (x)

So that

f (xut+1) ≤ f (xt+1)

Since aut and xt belong to �, the quantity |〈G′1(xt ) −
G′2(xt ), a

u
t − xt 〉| and ‖aut − xt‖2 are bounded above for any

iteration t . Therefore, there exits a constant c1 > 0 such that

〈U ′t (xt ),
aut − xt

t
〉 ≤ c1

|St |
t2
+ f (xt+1)− f (xt )+

c1L
t2

(12)

Summing both sides of (12) for all iterations t ≥ 1, we have

+∞∑
t=1

1
t
〈U ′t (xt ), a

u
t − xt 〉

≤

+∞∑
t=1

c1
|St |
t2
+ f (x+∞)− f (x1)+

+∞∑
t=1

c1L
t2

(13)

Because f (x) is bounded then f (x+∞) is bounded. Note
that St = O(

√
t log t) [62], and hence

∑
+∞

t=1 c1
|St |
t2

con-
verges in probability 1 and

∑
+∞

t=1
L
t2

also is bounded.
Hence, the right-hand side of (13) is finite. In addition,
〈U ′t (xt ), a

u
t 〉 > 〈U

′
t (xt ), xt 〉 for any t > 0 because of aut =

argmaxx∈�〈U ′t (xt ), x〉. Therefore, we obtain the following

0 ≤
+∞∑
t=1

1
t
〈U ′t (xt ), a

u
t − xt 〉 <∞ (14)

In other words, the series
∑
+∞

t=1
1
t 〈U
′
t (xt ), a

u
t −xt 〉 converges

to a finite constant. Note that 〈U ′t (xt ), a
u
t − xt 〉 ≥ 0 for any

t . If there exists constant c2 > 0 satisfying 〈U ′t (xt ), a
u
t −

xt 〉 ≥ c2 for an infinite number of t’s, then the series∑
+∞

t=1
1
t 〈U
′
t (xt ), a

u
t − xt 〉 could not converge to a finite con-

stant, which is in contrary to (14). Therefore,

〈U ′t (xt ), a
u
t − xt 〉 → 0 as t →+∞ (15)

Because of U ′t → f ′ as t → ∞ and both U ′t and f ′ are
continuous, combining with (15) we have

〈f ′(xt ), aut − xt 〉 → 0 as t →+∞ (16)

Using the ‘‘Frank-Wolfe gap’’ criterion in [25], from (16),
we have xt → x∗ as t → +∞. In other words, xt converges
in probability to a stationary point x∗ of f (x) �

APPENDIX B
PROOF OF THEOREM 2
Consider the sequence {Ut } built as follows:
• Given the Bernoulli parameter p ∈ (0, 1),

G1(x) =
g1(x)
p
; G2(x) =

g2(x)
1− p

• Initialize f u1 = G2(x),
• For each iteration t, (t ≥ 2), pick f ut randomly from
{G1(x), G2(x)} with probability p ∈ (0, 1) where

P(f ut = G1(x)) = p, P(f ut = G2(x)) = 1− p

• Then, we obtain a sequence {Ut }:

Ut :=
1
t

t∑
h=1

f uh
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We find out that {Ut } is the approximation of objective
function f (x), and Ut is the average of t random variables
{f u1 , f

u
2 , . . . , f

u
t }.

Let at and bt be the number of times that we have already
picked G1(x) and G2(x) respectively in Ut after t iterations.
We have at + bt = t and Ut = 1

t (atG1 + btG2). We find
out that at follows the binomial distribution with parameters
t và p. Instead of optimizing directly on the true objective
function f (x), BOPE maximizes the approximation Ut (x).
Denote St = at − tp and f (x) = g1(x) + g2(x) = pG1(x) +
(1− p)G2(x), the sequence Ut (x) is rewritten as:

Ut (x) = f (x)+
St
t
(G1(x)− G2(x)) (17)

According to (17), Ut is a sum of objective function f (x)
and St

t (G1(x) − G2(x)). Thus, Ut is the approximations of
objective function f (x), and St

t (G1(x) − G2(x)) is the regu-
larization term. According to the law of iterated logarithm
[62] and proof of Theorem 1, we obtain St

t → 0 as t → ∞
with probability one, then St

t (G1(x) − G2(x)) converges to 0
as t →∞.

According to the construction of BOPE algorithm, we have

St
t
=
at − tp

t
=
at
t
− p

where E[ att ] = p and D[ att ] =
p(1−p)

t .Therefore, E[ Stt ] = 0
and D[ Stt ] =

p(1−p)
t → 0 as t → ∞. In addition, analyzing

the function g(p) = p(1− p) with p ∈ (0, 1), we find out that
g(p) reaches a maximumwhen p = 1

2 , and if p→ 0 or p→ 1
then g(p) = p(1− p)→ 0. Thus, we have

Ut (x) = f (x)+ (
at
t
− p)(

g1(x)
p
−
g2(x)
1− p

)

Denote h(t, p) = at
t − p, we have that h(t, p) goes to 0 as

t →∞. Therefore, we have

Rt (g1, g2, p) = h(t, p)(
g1(x)
p
−
g2(x)
1− p

)→ 0 as t →∞

and

Ut (x) = f (x)+ Rt (g1, g2, p)

where Rt (g1, g2, p) has the role as a regularization term sat-
isfying h(t, p) = at

t − p goes to 0 as t → ∞. Thus, the
regularization term Rt (g1, g2, p) depends heavily on the value
of the Bernoulli parameter p ∈ (0, 1). Therefore, in essence,
the Bernoulli parameter p ∈ (0, 1) is considered as the regu-
larization parameter in order to the BOPE algorithm becomes
an effective method for solving the MAP problem. �

APPENDIX C
EXTRA EXPERIMENTAL RESULTS IN CTMP MODEL
In this section, we present some results of BOPE applying
in the CTMP model when changing parameters such as the
number of topics K , Dirichlet prior parameter α, offset preci-
sion λ and Bernoulli parameter p. CiteULike dataset is used.
The results are reported in Figures 20, 21, 22.

FIGURE 20. We fix offset precision λ = 1000, the number of topics
K = 100 and choose Bernoulli parameter p = 0.7 then change Dirichlet
prior parameter α ∈ {1;0.1;0.01;0.001;0.0001}.

FIGURE 21. We fix Dirichlet prior parameter α = 1, the number of topics
K = 100 and choose Bernoulli parameter p = 0.7, then change offset
precision λ ∈ {1;10;100;1000;10000}.

FIGURE 22. We fix the Dirichlet prior parameter α = 1, offset precision
λ = 1000 and choose Bernoulli parameter p = 0.7, then change the
number of topics K ∈ {50;100;150;200;250}.

APPENDIX D
PREDICTIVE PROBABILITY
Predictive Probability shows the predictiveness and general-
ization of a model M on new data. We followed the procedure
in [32] to compute this measurement. For each document in
a testing dataset, we divided randomly into two disjoint parts
wobs and who with a ratio of 80:20. We next did inference for
wobs to get an estimate of E(θobs). Then we approximated the
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predictive probability as

P(who|wobs,M) '
∏

(w∈who)

K∑
k=1

E(θobsk )E(βkw)

Log Predictive Probability = log
P(who|wobs,M)

|who|

whereM is the model to be measured.We estimatedE(βk ) ∝
λk for the learning methods which maintain a variational
distribution (λ) over topics. Log Predictive Probability was
averaged from 5 random splits, each was on 1000 documents.

APPENDIX E
NPMI
NPMI measurements helps us to see the coherence or seman-
tic quality of individual topics. According to [63], NPMI
agrees well with human evaluation on interpretability of topic
models. For each topic t , we take the set {w1,w2, . . . ,wn} of
top n terms with highest probabilities. We then computed

NPMI (t) =
2

n(n− 1)

n∑
j=2

j−1∑
i=1

log P(wj,wi)
P(wj)P(wi)

− logP(wj,wi)

where P(wi,wj) is the probability that terms wi and wj appear
together in a document. We estimated those probabilities
from the training data. In our experiments, we chose top
n = 10 terms for each topic. Overall, NPMI of a model with
K topics is averaged as:

NPMI =
1
K

K∑
t=1

NPMI (t)
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