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Figure 1. We introduce VOODOO 3D: a high-fidelity 3D-aware one-shot head reenactment technique. Our method
transfers the expression of a driver to a source and produces view consistent renderings for holographic displays.

Abstract

We present a 3D-aware one-shot head reenactment
method based on a fully volumetric neural disentanglement
framework for source appearance and driver expressions.
Our method is real-time and produces high-fidelity and
view-consistent output, suitable for 3D teleconferencing
systems based on holographic displays. Existing cutting-
edge 3D-aware reenactment methods often use neural ra-
diance fields or 3D meshes to produce view-consistent ap-
pearance encoding, but, at the same time, they rely on lin-
ear face models, such as 3DMM, to achieve its disentan-
glement with facial expressions. As a result, their reenact-
ment results often exhibit identity leakage from the driver
or have unnatural expressions. To address these problems,
we propose a neural self-supervised disentanglement ap-
proach that lifts both the source image and driver video
frame into a shared 3D volumetric representation based on
tri-planes. This representation can then be freely manipu-
lated with expression tri-planes extracted from the driving
images and rendered from an arbitrary view using neural
radiance fields. We achieve this disentanglement via self-

supervised learning on a large in-the-wild video dataset.
We further introduce a highly effective fine-tuning approach
to improve the generalizability of the 3D lifting using the
same real-world data. We demonstrate state-of-the-art per-
formance on a wide range of datasets, and also showcase
high-quality 3D-aware head reenactment on highly chal-
lenging and diverse subjects, including non-frontal head
poses and complex expressions for both source and driver.

1. Introduction

Creating 3D head avatars from a single photo is a core ca-
pability in making a wide range of consumer AR/VR and
telepresence applications more accessible, and user expe-
riences more engaging. Graphics engine-based 3D avatar
digitization methods [9, 14, 34, 38, 47, 48, 50, 59] are suit-
able for today’s video games and virtual worlds, and many
commercial solutions exist (AvatarNeo [5], AvatarSDK [1],
ReadyPlayerMe [6], in3D [2], etc.). However, the photo-
realism achieved by modern neural head reenactment tech-
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niques is becoming increasingly appealing for advanced ef-
fects in video sharing apps and visual effects. For immer-
sive telepresence systems that use AR/VR headsets, facial
expression capture is typically achieved using tiny video
cameras built into HMDs [30, 51, 57, 66, 72] , while the
identity of the source subject recorded using a separate pro-
cess. However, the teleconferencing solutions based on
holographic 3D displays (LookingGlass [4], LEIA [3], etc.)
use regular webcams [84] or depth sensors [49]. As opposed
to a video-based setting, head reenactment for immersive
applications needs to be 3D-aware, meaning that in addi-
tion to generating the correct poses and expressions from a
photo, multi-view consistency is critical.

While impressive facial reenactments results have been
demonstrated using 2D approaches [27, 28, 85, 98, 103,
104], they typically struggle with preserving the likeness
of the source and exhibit significant identity changes when
varying the camera pose. More recently, 3D-aware one-shot
head reenactment methods [37, 44, 54, 55, 61, 100] have
used either 3D meshes or tri-plane neural radiance fields as
a fast and memory efficient volumetric data representations
for neural rendering. However, the expression and identity
disentanglement in these methods is based on variants of
linear face and expression models [15, 53] which lack ex-
pressiveness and high-frequency details. While these meth-
ods can achieve view consistency, facial expressions are of-
ten uncanny, and preserving the likeness of the input source
portrait is challenging, especially for views different than
the source image. Hence, input sources with extreme ex-
pressions and non-frontal poses are often avoided.

In this paper, we introduce the first 3D aware one-shot
head reenactment technique that disentangles source iden-
tities and the target expressions fully volumetrically, and
without the use of explicit linear face models. Our method
is real-time and designed with holographic displays in mind,
where a large number of views (up to 45) can be rendered
in parallel based on their viewing angle. We leverage the
fact that real-time 3D lifting for human heads has recently
been made possible [84] with the help of Vision Trans-
formers (ViT) [26], which avoids the need for inefficient
optimization-based GAN-inversion process [70]. In par-
ticular, 3D lifting allows us to map 2D face images into a
canonical tri-plane representation for both source and target
subjects and treat identity and expression disentanglement
independently from the head pose.

Once the source image and driver frame are lifted into
a pose-normalized tri-plane representation, we extract ap-
pearance features from the source subject and expressions
from the driver. The pose of the driver is estimated sepa-
rately using a 3D face tracker and used as input to a neural
renderer. Tri-plane-based feature extraction ensures view-
consistent rendering, while facial appearance and driver ex-
pression feature use frontalized views from the 3D lifting

to enable robust and high-fidelity facial disentanglement.
To handle highly diverse portraits (variations in facial ap-
pearance, hairstyle, head covering, eyewear, etc.), we pro-
pose a new method for fine-tuning Lp3D on real datasets
by introducing a mixed loss function based on real and syn-
thetic datasets. Our volumetric disentanglement and render-
ing framework is trained only using in-the-wild videos from
the CelebV-HQ dataset [113] in a self-supervised fashion.

We not only demonstrate that our volumetric face dis-
entanglement approach produces qualitative superior head
reenactments than existing ones, but also show on a wide
and diverse set of source images how non-frontal poses
and extreme expressions can be handled. We have quan-
titatively assessed our method on multiple benchmarks and
outperform existing 2D and 3D state-of-the-art techniques
in terms of fidelity, expression, and likeness accuracy met-
rics. Our 3D aware head reenactment technique is there-
fore suitable for AR/VR-based immersive applications, and
we also showcase a teleconferencing system using a holo-
graphic display from LookingGlass [4]. We summarize the
main contributions as follows:
• First fully volumetric disentanglement approach for real-

time 3D aware head reenactment from a single photo.
This method combines 3D lifting into a canonical tri-
plane representation and formalized facial appearance
and expression feature extraction.

• A 3D lifting network that is fine-tuned on unconstrained
real-world data instead of only generating synthetic ones.

• We demonstrate superior fidelity, identity preservation,
and robustness w.r.t. current state-of-the-art methods for
facial reenactment on a wide range of public datasets. We
plan to release our code to the public.

2. Related Work
2D Neural Head Reenactment. The problem of generat-
ing animations of photorealistic human heads given images
or video inputs has been thoroughly explored using various
neural rendering techniques in the past few years, outper-
forming traditional 3DMM-based methods [8, 27, 32, 45,
65, 68, 81, 82, 97] which often appear uncanny due to their
compressed linear space. These approaches can be cate-
gorized into one-shot and multi-shot ones. While multi-
shot methods generally achieve high-fidelity results, they
are not suitable for many consumer applications as they typ-
ically require an extensive amount of training data, such as
a monocular video capture [10, 11, 18, 21, 31, 35, 94, 109–
111, 114], and sometimes even a calibrated multi-view
stereo setup [13, 30, 57, 60, 72]. More recently, few-shot
techniques [105] have also been introduced.

To maximize accessibility, a considerable number of
methods [17, 27, 28, 33, 36, 40, 68, 75–77, 79, 80, 85,
88, 89, 98, 102–104, 108] use a single portrait as input by
leveraging advanced generative modeling techniques based



on in-the-wild video training data. While most methods rely
on linear face models to extract facial expressions, the head
reenactment technique from Drobyshev et al. [28] directly
extract expression features from cropped 2D face regions,
allowing them to obtain better face disentanglements, which
results in higher fidelity face synthesis. While similar to our
proposed approach in avoiding the use of low dimensional
linear face models, their method is purely 2D and strug-
gly with ensuring identity and expression consistency when
novel views are synthesized.

3D-Aware One-Shot Head Reenactment. Due to poten-
tial inconsistencies when rendering from different views or
poses, a number of 3D-aware single shot head reenactment
techniques [7, 19, 20, 25, 64, 67, 73, 78, 90, 93, 95, 96]
have been introduced. These methods generally use an ef-
ficient 3D representation, such as neural radiance fields or
3D mesh, to geometrically constraint the neural rendering
and improve view consistency. ROME [44] for instance is
a mesh-based method using FLAME blendshapes [52] and
neural textures. While view-consistent results can be pro-
duced for both face and hair regions, the use of low resolu-
tion polygonal meshes hinders the neural renderer to gener-
ate high-fidelity geometric and appearance details.

Implicit representations such as HeadNeRF [37] and
MofaNeRF [39] use a NeRF-based parametric model which
supports direct control of the head pose of the generated
images. While real-time rendering is possible, these meth-
ods require intensive test-time optimization and often fail
to preserve the identity of the source due to the use of com-
pact latent vectors. Most recent methods [54, 55, 100] adopt
the highly efficient tri-plane-based neural fields representa-
tion [20] to encode the 3D structure and appearance of the
avatars head. Compared to the previous works on view-
consistent neural avatars [37, 44, 54, 55, 61, 100], we refrain
from depending on parametric head models for motion syn-
thesis and, instead, learn the volumetric motion model from
the training data. This methodology enables us to narrow
the identity gap between the source and generated images
and yield a superior fidelity of the generated motion com-
pared to competing approaches, and hence a higher quality
disentanglement for reenactment.

3D GAN Inversion. When training a whole reconstruc-
tion and disentangled reenactment model end-to-end on fa-
cial performance videos, one can introduce substantial over-
fitting and reduce the quality of the results. To address this
problems, we focus our training approach to an inversion of
pre-trained 3D-aware generative models for human heads.

We use tri-plane-based generative network EG3D [20]
as the foundational generator, due to its proficiency in pro-
ducing high-fidelity and view-consistent synthesis of hu-
man heads. For a given image, an effective 3D GAN inver-

sion method should leverage these properties for estimat-
ing latent representations, which can be decoded into out-
puts that maintain view consistency and faithfully replicate
the contents of the input. One naive approach is to adapt
GAN inversion methods that were initially designed for 2D
GANs to the EG3D pre-trained network. These methods
either do a time consuming but more precise optimization
[43, 70] or train a fast but less accurate encoder network
[69, 83] to obtain the corresponding latent vectors. They
often produce incorrect depth prediction, leading to clear
artifacts in novel view synthesis. Hence, some methods
are specifically designed for inverting 3D GANs, which ei-
ther do multi-view optimization [46, 92] or predict residual
features/tri-plane maps for refining the initial inversion re-
sults [12, 84, 99, 101].

In this work, we rely on the state-of-the-art EG3D inver-
sion method Lp3D [84]. While achieving excellent novel-
view synthesis results, it lacks disentanglement between the
appearance and expression of the provided image and is
unable to impose various driving expressions onto the in-
put. To address this limitation, we propose a new method
that introduces appearance-expression disentanglement in
the latent space of tri-planes using our new self and cross-
reenactment training pipeline while relying on a pre-trained
but fine-tuned Lp3D network for regularization which en-
ables highly consistent view synthesis.

3. 3D-Aware Head Reenactment
As illustrated in Fig. 2, our head reenactment pipeline con-
sists of three stages: 1) 3D Lifting, 2) Volumetric Disen-
tanglement, and 3) Tri-plane Rendering. Given a pair of
source and driver images, we first frontalize them using a
pre-trained but fine-tuned tri-plane-based 3D lifting module
[84]. This driver alignment step is crucial and allows our
model to disentangle the expressions from the head pose,
which prevents overfitting. Then, the frontalized faces are
fed into two separate convolutional encoders to extract the
face features Fs and Fd. These extracted features are con-
catenated with the ones extracted from the tri-planes of the
source, and all are fed together into several transformer
blocks [91] to produce the expression tri-plane residual,
which is added to the tri-planes of the source image. The fi-
nal target image can be rendered from the new tri-planes us-
ing a pre-trained tri-plane renderer using the driver’s pose.

3.1. Fine-Tuned 3D Lifting

We adopt Lp3d [84] as a 3D face-lifting module, which pre-
dicts the radiance field of any given face image in real-time.
Instead of using an implicit multi-layer perceptron [63] or
sparse voxels [29, 74] for the radiance field, Lp3D [84] uses
tri-planes [20], which can be computed using a single for-
ward of a deep learning network. Specifically, for a given
source image xs, we first extract the tri-planes T using a
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Figure 2. Given a pair of source and driver images, our method processes them in three steps: 3D Lifting into tri-plane representations,
Volumetric Disentanglement, which consists of source and driver frontalization and tri-plane residual generation, and Tri-plane Render-
ing via volumetric ray marching with subsequent super-resolution.

transformer-based appearance encoder Eapp:

Eapp(xs) = T ∈ R3×H×W×C = {Txy, Tyz, Tzx}. (1)

The color c and density σ of each point p = (x, y, z) in
the radiance field can be obtained by projecting p onto the
three planes and by summing up the features at the projected
positions:

c, σ = D(Fxy + Fyz + Fzx), (2)

where D is a shallow MLP decoder for the tri-plane ren-
dering, Fxy, Fyz , and Fzx are the feature vectors at the pro-
jected positions on xy, yz, and zx planes, respectively, cal-
culated using bilinear interpolation. The rendered 128×128
image is then upsampled using a super-resolution module to
produce a high-resolution output. To train the encoder Eapp,
Lp3D [84] uses synthetic data generated from a 3D-aware
face generative model [20]. While these synthetic data have
ground truth camera poses, they are limited to the face dis-
tribution of the generative model. As a result, Lp3D can
fail to generalize to in-the-wild images as shown in Fig. 5.
To prevent this, we fine-tune the pre-trained Lp3D on a
large-scale real-world dataset. We also replace the origi-
nal super-resolution module in Lp3D with a pre-trained GF-
PGAN [87], which is then fine-tuned together with Lp3D
(see Sec. 3.4).

3.2. Disentangling Appearance and Expression

Separating facial expression from the identity appearance
in a 3D radiance field is very challenging especially when
source and driver subjects have misaligned expressions. In
order to simplify the problem, we use our 3D lifting ap-
proach to bring both source and driver heads into a pose-
oriented space where faces are frontalized. Here, we denote
frontalized source and driver images as xf

s and xf
d , respec-

tively. These images are then fed into two separate convo-
lutional source and driver encoders Es and Ed to produce

coarse feature maps:

Fs = Es(x
f
s )

Fd = Ed(x
f
d)

Since we already have the source’s tri-plane, which en-
codes the 3D shape of the source, we use another encoder
to encode this tri-plane and concatenate it together with the
coarse frontalized feature maps of the images to produce
expression feature F :

Ft = Et(T )

F = Fs ⊕ Fd ⊕ Ft

Even though face frontalization aligns the source and the
driver, there is still some misalignment between the two
faces, e.g., the positions of the eyes may be different, or one
mouth is open while the other is closed. Therefore, we feed
the concatenation of the feature maps into several trans-
former blocks to produce the final residual tri-plane Ev(F ).
This residual is then added back to the source’s tri-planes
to change the source’s expression to the driver’s expression
T ′ = T + Ev(F ). Unlike LPR [55], we do not use a 3D
face model to compute the expression but instead use the
RGB images of the source and the driver directly, allowing
the model to learn high-fidelity and realistic expressions.

3.3. Tri-Plane Rendering

The resulting tri-planes are then volumetrically rendered
into one or multiple output images using pose parame-
ters and viewing angles in the case of a holographic dis-
play. Following EG3D [20], we use a neural radiance fields
(NeRFs)-based volumetric ray marching approach [62].
However, instead of encoding each point in space via po-
sitional encodings [62], the features of the points along rays
are calculated using their projections onto tri-planes. Since
tri-planes are aligned with the frontal face, we can compute



these rays directly using camera extrinsics Pdriver predicted
by an off-the-shelf 3D head pose estimator [24].

While the renderings are highly view-consistent, the
large number of points evaluated for each ray still limits
the ouput resolution for real-time performance. We there-
fore follow [55] and employ a 2D upsampling network [86]
based on StyleGAN2 [42], which in our experiments pro-
duced higher quality results than the upsampling approach
in EG3D [20]. Finally, for holographic displays, we gen-
erate a number of renderings based on their viewing an-
gles and simply using the head pose parameter. Real-time
performance is achieved using efficient inference libraries
such as TensorRT, half-precision, and batched inference
over multiple GPUs.

3.4. Training Strategy

Fine-Tuning Lp3D. To make Lp3D work with in-the-
wild images, we fine-tune it on a large-scale real-world
video dataset [112]. Unlike the use of synthetic data, real-
world data do not have ground-truth camera parameters and
facial expressions in monocular videos are typically incon-
sistent over time. While the camera parameters can be es-
timated using standard 3D pose estimators, the expression
diferences are difficult to determine. However, we found
that we can ignore this expression difference and fine-tune
Lp3D using real data together with continuous training on
synthetic data. In particular, our experiments indicate that
the fine-tuned model can still faithfully reconstruct 3D faces
from the input without changing expressions and still gen-
eralize successfully on in-the-wild images. Specifically, on
real video data, we sample two frames xr

s and xr
d and es-

timate their camera paramters P r
s and P r

d . Similar to [20],
we assume a fixed intrinsics for standard portraits for all
images. Then we use Eapp from Lp3D to calculate the tri-
planes of xr

s, render it using the two poses, and calculate
reconstruction losses on the two rendered images:

Lreal = ∥Lp3D(xr
s, P

r
d )− xr

d∥+ ∥Lp3D(xr
s, x

r
s)− xr

s∥,

where Lp3D(x, P ) is the face in x re-rendered using camera
pose P and Lreal is the loss for real images. Simultaneously,
we render two synthetic images employing an identical la-
tent code but through varying camera views and calculate
the synthetic loss Lsyn:

Lsyn = ∥Lp3D(xf
s , P

s
d )− xs

d∥+ ∥Lp3D(xs
s, P

s
s )− xs

s∥
Ltri = ∥Eapp(x

f
s )− T∥,

where T is the ground-truth tri-planes returned by EG3D
[20] and Ltri is the tri-plane loss adopted directly from
Lp3D. The final loss Lapp for fine-tuning Lp3D can be for-
mulated as:

Lapp = Lreal + λsynLsyn + λtriLtri

where λsyn and λtri are tunable hyperparameters.

Disentangling Appearance and Expressions. In this
stage, we also use real-world videos as training data. For a
pair of source and driver images xs and xd sampled from the
same video, we apply the reconstruction loss Lrecon which is
a combination of L1, perceptual [106], and identity losses,
between the reenacted image xs→d and the corresponding
ground-truth xd:

Lrecon = ∥xs→d − xd∥1 + ϕ (xs→d, xd)

+ ∥ID(xs→d)− ID(xd)∥1,

where ϕ is the perceptual loss and ID(·) is a pretrained face
recognition model. Similar to other works that use RGB
images directly to calculate expressions [28], our proposed
encoder also suffers from an “identity leaking” issue. Since
there is no cross-reenactment dataset, the expression mod-
ule is trained with self-reenactment video data. Therefore,
without proper augmentation and regularization, the expres-
sion module can leak identity information from the driver
to the output, making the model fail to generalize to cross-
reenactment tasks. Hence, we introduce a Cross Identity
Regularization. Specifically, we further sample an addi-
tional driver frame xd′ from another video. We incorporate
a GAN loss where real samples are Lp3D(xs, P

d) and fake
samples are xs→d′ . This GAN loss is also conditioned on
the identity vector of the source ID(xs). Following [28], we
also apply strong augmentation (random warping and color
jittering) and additionally mask the border of the driver ran-
domly to further reduce potential identity leaks. The loss
for expression training can be summarized as:

Lexp = Lrecon + λCIRLCIR,

where LCIR and λCIR are cross identity regularization and
its hyperparameter, respectively.

Global Fine-Tuning. After training both Lp3D and the
expression module, we iteratively fine-tune the two modules
using the same losses as the previous sections. Specifically,
for every 10000 iterations, we freeze one module and fine-
tune the other and vice versa. In addition, we add a GAN
loss on the super-resolution output of the Lp3D module.

4. Experiments
Implementation Details. We train our model on CelebV-
HQ dataset [113] using 7 NVIDIA RTX A6000 ADA (50Gb
memory each). We use AdamW [58] to optimize the param-
eters with a learning rate of 10−4 and batch size of 28. The
Lp3D finetuning takes 5 days for 500K iterations to con-
verge. Training the expression module takes 2 days, and the
iterative fine-tuning takes another 5 days. More training de-
tails, such as hyperparameter fine-tuning or architecture of
the networks, can be found in the supplementary materials.



Source Driver Ref View Novel View Wrinkles Geometry
Figure 3. Expression dependent high-fidelity details, incl. eye and forehead wrinkles, as well as nasolabial folds (see zoom-ins)

Source Driver HeadNeRF StyleHEAT MegaPortraits ROME Ours

Figure 4. A qualitative comparison with the baselines on in-the-wild photos. Notice that our method is capable of producing a variety of
facial expressions, and handle highly diverse subjects, with and without accessories, as well as extreme head poses, such as rows 3 and 4.



Method Self-reenactment Cross-reenactment
PSNR ↑ SSIM ↑ LPIPS ↓ NAKD ↓ ECMD ↓ FID ↓ CSIM ↑ ECMD ↓ FID ↓

ROME [44] 18.46 0.488 0.351 0.030 0.594 138 0.507 0.740 172
StyleHeat [98] 19.73 0.689 0.278 0.035 0.748 89.8 0.398 0.744 95.5
OTAvatar [61] 19.28 0.749 0.289 0.035 0.651 67.0 0.462 0.901 72.4
MegaPortraits [28] 21.10 0.731 0.291 0.022 0.755 52.0 0.729 0.771 61.7
Ours 22.83 0.768 0.168 0.012 0.426 40.5 0.754 0.754 36.4

Table 1. Evaluation on HDTF [107] dataset. Our method outperforms the competitors across
almost all of the metrics for both self- and cross-reenactment scenarios.

Method
Cross-reenactment

CSIM ↑ ECMD ↓ FID ↓
ROME [44] 0.519 0.91 52.6
HeadNeRF [37] 0.346 0.88 113
StyleHeat [98] 0.467 0.85 50.2
MegaPortraits [28] 0.647 0.77 29.2
Ours 0.608 0.79 23.6

Table 2. Evaluation on CelebA-HQ [41]
dataset.

Input image w/o finetuning w/ finetuning

Figure 5. Our implementation
of Lp3D [84] before and after
CelebV-HQ [113] fine-tuning.

CSIM ↑ ECMD ↓
Lp3D 0.548 0.82
Lp3D-FT 0.670 0.76
w/o frontal 0.668 1.01
w/o CIR 0.570 0.97
Ours 0.608 0.79

Table 3. Ablation studies
conducted on CelebA-HQ [41]
dataset. FT is a fine-tuned
version of Lp3D, and “frontal”
denotes frontalization of the
source and driver.

Source Driver W/o Frontalization  W/o CIR Ours

Figure 6. Ablation study for source and driver frontalization and
cross identity regularization (CIR).

Source Expr driver LPR Ours
Figure 7. Qualitative comparison with LPR [55] method on the
samples from HDTF [107] dataset.

Unlike Lp3D, our method reenacts faces without re-
lifting in 3D for every frame. For each driver, we perform
only a single frontalization (0.0115 ms), one inference for
expression encoding (0.0034 ms), and one tri-plane render-
ing at 128 × 128 resolution (0.0071 ms), and one neural
upsampling (0.0099 ms). Each view runs at 31.9 fps on an
Nvidia RTX 4090 GPU including I/O. More details on per-
formance can be found in the supplemental materials.

We compare our method with state-of-the-art 3D-

based [37, 44, 61] and 2D-based [28, 98] models. For
MegaPortraits [28], we use our own implementation that
was trained on the CelebV-HQ dataset. Similar to previous
works, we evaluate our method using public benchmarks,
including CelebA-HQ [41] and HDTF [107]. For CelebA-
HQ, we split the data into two equal sets. Each set contains
around 15K images. Then, we use one set as the source and
the rest as driver images. For the HDTF dataset, we perform
cross-reenactment by using the first frame of each video as
source and 200 first frames of other videos as drivers, which
is more than 60K data pairs. Similarly, to evaluate self-
reenactment, we also use the first frames of each video as
sources and the rest of the same video as the driver. Further-
more, we also collected 100 face images on the internet and
around 100 high-quality videos for qualitative comparison
purposes. We provide the video results in the supplemen-
tary materials.

Quantitative Comparisons. Given a source image xs, a
driver image xd, and reenacted output xs→d we use EMO-
CAv2 [23] to extract the FLAME [53] expression coeffi-
cients of the prediction and the driver, as well as the shape
coefficients of the source. We then compute 2 FLAME
meshes using the predicted shape coefficients in world co-
ordinates, one with the expression coefficients of the driver
and one with the expression coefficients of the reenacted
output. We measure the distance between the 2 meshes
and denote this expression metric as ECMD. Moreover,
we also use cosine similarity between the embeddings of
a face recognition network (CSIM) [102], normalized aver-
age keypoint distance (NAKD) [16], perceptual image simi-
larity (LPIPS) [106], peak signal-to-noise ratio (PSNR), and
structure similarity index measure (SSIM).

We provide quantitative comparisons on HDTF and
CelebA-HQ datasets in Tab. 1 and Tab. 2, respectively,
and show that our method outperforms existing methods
on both datasets. We also note that our FID and CSIM
scores are significantly more reliable than the others, while
expression-based metrics such as NAKD and ECMD are ei-
ther better or very close to the best baseline, w.r.t output
quality, expression accuracy, and identity consistency.

Qualitative Results. Fig. 4 and Fig. 3 showcase the qual-
itative results of cross-identity reenactment on in-the-wild
images. Compared to the baselines [28, 37, 44, 98], our



reenactment faithfully reconstructs intricate and complex
elements, such as hairstyle, facial hair, glasses, and fa-
cial makeups. Furthermore, our method effectively gener-
ates realistic and fine-scale dynamic details that mach the
driver’s expressions including substantial head pose rota-
tions. We also conduct a comparative analysis of our results
with the current state-of-the-art 3D-aware method LPR [55]
in Fig. 7. Compared to LPR, our method achieves supe-
rior identity consistency. We further refer to the supple-
mental video for a live demonstration of our holographic
telepresence system and animated head reenactment results
and comparisons, with and without disentangled poses.

Ablation Study. We compare Lp3D with and without
fine-tuning on the CelebA-HQ dataset in Tab. 3 and show
several examples in Fig. 5. Without fine-tuning on real data,
our implementation of Lp3D fails to preserve the identity
of the input image, resulting in a considerably lower CSIM
score. We also try without any facial frontalization in the
expression module and instead use the source and driver
images directly to calculate the expression tri-plane resid-
ual. We observe in Fig. 6 that without face frontalization,
the model completely ignores the expression of the driver
and keeps the expression of the input source instead. We
show in Tab. 3, that facial frontalization leads to much bet-
ter ECMD score. We then measure the effectiveness of the
GAN-based cross-identity regularization on the CelebA-
HQ dataset, LCIR. Without this loss, identity characteristics
(hairstyle or color) can leak from the driver to the output.
See column 4 in Fig. 6. Tab. 3 also shows that cross-identity
regularization can reduce identity leaking and improve the
CSIM score. Lastly, we have also attempted to train our
model end-to-end using the same losses and optimization
process instead of our proposed iterative fine-tuning. Even
with a lower learning rate and the use of pre-trained Lp3D
weights, we were unable to succeed.

Limitations. Limitations of our approach are illustrated
in Figure 8. For source images that are extremely side ways
(i.e., over 90◦), our method can produce a plausible frontal
face, but the likeness cannot be guaranteed due to insuf-
ficient visibility. For very highly stylized portraits, such
as cartoons, our framework often produces photorealistic
facial elements such as teeth which can be inconsistent in
style. Due to the dependence on training data volume and
diversity, accessories such as dental braces or glasses may
disappear or look different during synthesis. We believe that
providing more and better training data can further improve
the performance of our algorithm.

5. Discussion
We have demonstrated that a fully volumetric disentan-
glement of facial appearance and expressions is possible

Source Driver Output Source Driver Output

Figure 8. Failure cases of our method include side views in
the source, extreme expressions, modeling of cartoonish charac-
ters and paintings, as well as modeling the reflections and semi-
transparency of the eyewear.

through a shared canonical tri-plane representation. In par-
ticular, an improved disentanglement also leads to higher
fidelity and more robust head reenactment, when compared
to existing methods that use linear face models for expres-
sions, especially for non-frontal poses. A critical insight
of our approach is that head frontalization via 3D lifting
is particularly effective for extracting features that can en-
code fine-scale details and expressions such as wrinkles
and folds. The resulting reenactment is also highly view-
consistent for large angles, making our solution suitable for
holographic displays. We have also shown that the 3D lift-
ing model can still be successfully trained with real data
despite the fact that different frames with the same subject
have varying facial expressions. Without a fine-tuned 3D
lifting model, our 3D-aware reenactment framework would
struggle with preserving the identity of the source, espe-
cially for side views. Our experiments indicate that our re-
sults achieve better visual quality and are more robust to ex-
treme poses, which is validated via an extensive evaluation
on multiple datasets.

Risks and Potential Misuse. The proposed method is in-
tended to promote avatar-based 3D communication. Never-
theless, our AI-based reenactment solution produces syn-
thetic but highly realistic face videos from only a single
photo, which could be hard to distinguish from a real per-
son. Like deepfakes and other facial manipulation methods,
potential misuse is possible and hence, we refer to the sup-
plemental material for more discussions.

Future Work. We are also interested in expanding our
work to upper and full body reenactment, where hand ges-
tures can be used for more engaging communication. To
this end, we plan to investigate the use of canonical repre-
sentations for human bodies, such as T-poses. As our pri-
mary motivation, we have showcased a solution using holo-
graphic displays for immersive 3D teleconferencing. How-
ever, we believe that our approach can also be extended to
AR/VR HMD-based settings where full 360° head views
are possible. The recent work by An et al. [7] is a promis-
ing avenue for future exploration.
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6. Training Details
Training Data. We fine-tune Lp3D using CelebV-HQ
dataset [113]. For the expression modules, we also use
the CelebV-HQ dataset but adopt an expression re-sampling
process to make the expressions of the sources and drivers
during training more different. Specifically, for a given
video, we use EMOCA [23] to reconstruct the mesh of ev-
ery frame without the head pose. Let these obtained meshes
be {M1,M2, ...,Mn}, we first pick two frames x∗ and y∗

such that the distance between their meshes are maximized:

x∗, y∗ = argmax
x,y

∥Mx −My∥2.

Then we pick the third frame z∗ such that:

z∗ = argmax
z

min (∥Mx∗ −Mz∥, ∥My∗ −Mz∥) .

We use this frame selection process for all the videos in the
CelebV-HQ dataset [113] and use the re-sampled frames to
train the expression modules. A few examples from this
selection process are shown in Fig. 9.

Frame 1 Frame 2 Frame 3

Figure 9. Some examples of our training data extracted from the
CelebV-HQ dataset [113]

Driver Augmentation. To prevent identity leaking from
the driver to the output, we apply several augmentations to

Conv2d(96, 96, kernel size=3, stride=2, padding=1)
ReLU()
Conv2d(96, 96, kernel size=3, stride=1, padding=1)
ReLU()
Conv2d(96, 128, kernel size=3, stride=2, padding=1)
ReLU()
Conv2d(128, 128, kernel size=3, stride=1, padding=1)
ReLU()
Conv2d(128, 128, kernel size=3, stride=1, padding=1)

Table 4. Architecture of ET

the frontalized driver images, including: (1) Kornia color
jiggle1 with parameters for brightness, contrast, saturation,
hue set to 0.3, 0.4, 0.3, and 0.4, respectively; (2) random
channel shuffle; (3) random warping2; and (4) random bor-
der masking with the mask ratio uniformly sampled from
0.1 to 0.3. During testing, we removed all the augmenta-
tions except the random masking and fixed the mask ratio
to 0.25. This random masking greatly improves the con-
sistency in the output, especially for border regions. In
addition, since we mask the border with a fixed rate, we
can modify the renderer to only generate the center of the
frontalized driver and further improve the performance.

Architecture Details. Our architecture design is inspired
by Lp3D [84]. Specifically, for Es and Ed, we use two
separate DeepLabV3 [22] with all normalization layers re-
moved. Since the triplane already captures deep 3D features
of the source, we adopt a simple convolutional network for
Et, which is given in Tab. 4. Recall that:

F = Fs ⊕ Fd ⊕ Ft

For the final transformer that is applied on the concatena-
tions of the feature maps F , we use a slight modification of
Elow (light-weight version) in Lp3D [84]. The architecture
of this module is given in Tab. 5 where block used is the
transformer block in SegFormer [91]. As mentioned in our
paper, we use a pretrained GFPGAN as the super-resolution
module. This module is loaded from a public pretrained
weight GFPGAN v1.4 [87] and fine-tuned end-to-end with
the network.

1https : / / kornia . readthedocs . io / en / latest /
augmentation . module . html # kornia . augmentation .
ColorJiggle

2https://github.com/deepfakes/faceswap/blob/
a62a85c0215c1d791dd5ca705ba5a3fef08f0ffd / lib /
training/augmentation.py#L318

https://kornia.readthedocs.io/en/latest/augmentation.module.html#kornia.augmentation.ColorJiggle
https://kornia.readthedocs.io/en/latest/augmentation.module.html#kornia.augmentation.ColorJiggle
https://kornia.readthedocs.io/en/latest/augmentation.module.html#kornia.augmentation.ColorJiggle
https://github.com/deepfakes/faceswap/blob/a62a85c0215c1d791dd5ca705ba5a3fef08f0ffd/lib/training/augmentation.py#L318
https://github.com/deepfakes/faceswap/blob/a62a85c0215c1d791dd5ca705ba5a3fef08f0ffd/lib/training/augmentation.py#L318
https://github.com/deepfakes/faceswap/blob/a62a85c0215c1d791dd5ca705ba5a3fef08f0ffd/lib/training/augmentation.py#L318


PatchEmbed(64, patch=3, stride=2, in=640, embed=1024)
Block(dim=1024, num heads=4, mlp ratio=2, sr ratio=1)
Block(dim=1024, num heads=4, mlp ratio=2, sr ratio=1)
PixelShuffle(upscale factor=2)
upsample(scale factor=2, mode=bilinear)
Conv2d(256, 128, kernel size=3, stride=1, padding=1)
ReLU()
upsample(scale factor=2, mode=bilinear)
Conv2d(128, 128, kernel size=3, stride=1, padding=1)
ReLU()
Conv2d(128, 96, kernel size=3, stride=1, padding=1)

Table 5. Architecture of the transformer network used in the ex-
pression module.

Training Losses. To train the model used in our experi-
ments, we set λsyn = 0.1, λtri = 0.01, and λCIR = 0.01. For
GAN-based losses, we use hinge loss [56] with projected
discriminator [71].

7. Implementation Details for Holographic
Display System

We implement our model on a Looking Glass monitor 32”3.
To visualize results on a holographic display, we must ren-
der multiple views for each frame using camera poses with
a yaw angle that spans the range from −17.5◦ to 17.5◦. In
our case, we find that using 24 views is sufficient for the
user experience. While our model can run at 32FPS using a
single NVIDIA RTX 4090 on a regular monitor, which only
requires a single view at a time, it cannot run in real-time
when rendering 24 views simultaneously. Thus, to achieve
real-time performance for the Looking Glass display, we ran
the holographic telepresence demo on seven NVIDIA RTX
6000 ADA GPUs.

We parallelize the rendering process to four GPUs, so
each one needs to render six views in a batch. We dedicate
one GPU for driving image pre-processing and another one
for disentangled tri-plane estimation. We use the last GPU
to run the looking-glass display itself. This setup results in
25 FPS for the whole application. We showcase the results
rendered on the holographic display in the supplementary
videos.

8. Additional Comparisons with LPR [55]
In this section, we compare our method with the cur-
rent state-of-the-art in 3D aware one-shot head reenact-
ment, LPR [55] using their test data from HDTF [107]
and CelebA-HQ datasets [41]. In particular, for CelebA-
HQ, they use even-index frames as sources and odd-index
frames as drivers, while in contrast, in our experiment
section, we use the first half as sources and the rest as

3https://lookingglassfactory.com/looking-glass-
32

drivers. For the HDTF dataset, they use a single driver
(WRA EricCantor 000) and the first frame of each video
as source image. Compared to our split, this reduces the
diversity in the driver images. We provide the comparison
results in Tab. 6 and Tab. 7. The ECMD scores on both
datasets show that our method is more accurate in transfer-
ring expression from the driver to the source images. On
the HDTF dataset, our results have much higher CSIM. Our
FID score is better than LPR [55] on CelebA-HQ but worse
on the HDTF dataset. We found that the HDTF’s ground-
truth images have poor quality while our outputs are higher
in quality; this mismatch causes our FID to be unimpres-
sive on this dataset. Hence, this FID arguably does not cor-
rectly reflect the performance of our model. According to
the qualitative examples in Fig. 14, our method captures the
driver’s expression more accurately than LPR. However, we
note that our quality is even higher than the input, as can be
observed in Fig. 14.

We also provide extensive qualitative comparisons in
Fig. 16 and Fig. 14. The expression of our output images
is more realistic and faithful to the driver, which is particu-
larly more visible in the mouth/teeth/jaw region, as well as
for driver or source side views. Notably, in Fig. 15, it can
be observed that LPR fails to remove the smiling from the
source, resulted in inaccurate expression in the reenacted
output while our method can still successfully transfer the
expression from the driver to the source image.

Method Cross-reenactment
CSIM ECMD FID

LPR [55] 0.531 0.912 25.26
Ours 0.774 0.860 54.15

Table 6. Quantitative comparisons with LPR [55] on HDTF
dataset using the test split proposed in [55].

Method Cross-reenactment
CSIM ECMD FID

LPR [55] 0.643 0.483 47.39
Ours 0.628 0.473 34.27

Table 7. Quantitative comparisons with LPR [55] on CelebA-HQ
dataset using the test split proposed in [55].

9. Additional Qualitative Comparisons

We provide additional qualitative comparisons with other
methods in Fig. 18, Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23,
Fig. 24, Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 30,
and Fig. 31.

In Fig. 17, we evaluate the ability to synthesize novel
views of our method. In addition, we also reconstruct the
3D mesh of the reenacted results.

https://lookingglassfactory.com/looking-glass-32
https://lookingglassfactory.com/looking-glass-32


In Fig. 10, we evaluate our model on self-reeactment task
using HDTF and our collected datasets.

In Fig. 11, we compares our method with the others on
source images that have jewelries. As can be seen, other
methods struggle to reconstruct the jewelries while our re-
sults still have the jewelries from the source input.

10. Addtional Experiments with PTI [70]
Our method can achieve high-quality results without notice-
able identity change without additional fine-tuning, which
is known to be computaionally expensive. In this section,
we try to fine-tune [70] the super-resolution module using
PTI [70] for 100 iterations, which takes around 1 minute per
subject. Without PTI, our pipeline runs instantly similarly
to [55]. For most cases, the difference between results with
and without fine-tuning is negligible. However, for out-of-
domain images such as Mona Lisa, PTI fine-tuning helps
retain the oil-painting style and fine-scale details from the
input source. For the fine-tuning results, please refer to the
supplementary video.

11. Additional Limitations
Besides the limitations that we discussed in the paper, we
also notice that the model cannot transfer tongue-related
expressions or certain asymmetric expressions due to lim-
ited training data for our 3D lifting and expressions mod-
ule. Since our method is not designed to handle the shoul-
der pose, the model uses the head pose as a single rigid
transformation for the whole portrait. This issue would be
an interesting research direction for future work. Also, our
model sometimes fails to produce correct accessories when
the input has out-of-distribution sunglasses. These failure
cases are illustrated in Fig. 12.
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Eric M. Gomez, Sascha Häberling, Hugues Hoppe, Andy
Huibers, Claude Knaus, Brian Kuschak, Ricardo Martin-
Brualla, Harris Nover, Andrew Ian Russell, Steven M.
Seitz, and Kevin Tong. Project starline: A high-fidelity
telepresence system. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia), 40(6), 2021. 2

[50] Biwen Lei, Jianqiang Ren, Mengyang Feng, Miaomiao Cui,
and Xuansong Xie. A hierarchical representation network
for accurate and detailed face reconstruction from in-the-
wild images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 394–403, 2023. 1

[51] Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tris-
tan Trutna, Pei-Lun Hsieh, Aaron Nicholls, and Chongyang
Ma. Facial performance sensing head-mounted display.
ACM Transactions on Graphics (Proceedings SIGGRAPH
2015), 34(4), 2015. 2



Source Driver OursLPR Source Driver OursLPR

Figure 16. Qualitative comparisons with LPR [55] on CelebA-HQ dataset.

[52] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and ex-
pression from 4D scans. ACM Transactions on Graphics,

(Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017. 3
[53] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and

Javier Romero. Learning a model of facial shape and ex-



Source Driver Novel views Geometry

Figure 17. Synthesizing novel views using our method.

pression from 4d scans. ACM Trans. Graph., 36(6):194–1,
2017. 2, 7

[54] Weichuang Li, Longhao Zhang, Dong Wang, Bin Zhao,
Zhigang Wang, Mulin Chen, Bang Zhang, Zhongjian
Wang, Liefeng Bo, and Xuelong Li. One-shot high-
fidelity talking-head synthesis with deformable neural radi-
ance field. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages
17969–17978, 2023. 2, 3

[55] Xueting Li, Shalini De Mello, Sifei Liu, Koki Nagano,
Umar Iqbal, and Jan Kautz. Generalizable one-shot neu-
ral head avatar. arXiv preprint arXiv:2306.08768, 2023. 2,
3, 4, 5, 7, 8

[56] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv



Figure 18. Qualitative results on various datasets.



Figure 19. Qualitative results on various datasets.



Figure 20. Qualitative results on various datasets.



Figure 21. Qualitative results on various datasets.



Figure 22. Qualitative results on various datasets.



Figure 23. Qualitative results on various datasets.



Figure 24. Qualitative results on various datasets.



Figure 25. Qualitative results on various datasets.



Figure 26. Qualitative results on various datasets.



Figure 27. Qualitative results on various datasets.



Figure 28. Qualitative results on various datasets.



Figure 29. Qualitative results on various datasets.



Figure 30. Qualitative results on various datasets.



Figure 31. Qualitative results on various datasets.

preprint arXiv:1705.02894, 2017. 2
[57] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser

Sheikh. Deep appearance models for face rendering. ACM
Trans. Graph., 37(4), 2018. 2

[58] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learn-
ing Representations, 2017. 5

[59] Huiwen Luo, Koki Nagano, Han-Wei Kung, Mclean Gold-
white, Qingguo Xu, Zejian Wang, Lingyu Wei, Liwen Hu,
and Hao Li. Normalized avatar synthesis using stylegan and
perceptual refinement. CoRR, abs/2106.11423, 2021. 1

[60] Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang,
Yuecheng Li, Fernando De la Torre, and Yaser Sheikh.
Pixel codec avatars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 64–73, 2021. 2

[61] Zhiyuan Ma, Xiangyu Zhu, Guo-Jun Qi, Zhen Lei, and Lei
Zhang. Otavatar: One-shot talking face avatar with control-
lable tri-plane rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16901–16910, 2023. 2, 3, 7

[62] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 4

[63] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[64] Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature



fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11453–11464, 2021. 3

[65] Yuval Nirkin, Yosi Keller, and Tal Hassner. FSGAN: Sub-
ject agnostic face swapping and reenactment. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 7184–7193, 2019. 2

[66] Kyle Olszewski, Joseph J. Lim, Shunsuke Saito, and Hao
Li. High-fidelity facial and speech animation for vr hmds.
ACM Transactions on Graphics (TOG), 35:1 – 14, 2016. 2

[67] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shecht-
man, Jeong Joon Park, and Ira Kemelmacher-Shlizerman.
Stylesdf: High-resolution 3d-consistent image and geome-
try generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 13503–13513, 2022. 3

[68] Yurui Ren, Ge Li, Yuanqi Chen, Thomas H. Li, and Shan
Liu. Pirenderer: Controllable portrait image generation
via semantic neural rendering. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 13759–13768, 2021. 2

[69] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam
Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or.
Encoding in style: a stylegan encoder for image-to-image
translation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 3

[70] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real
images. ACM Trans. Graph., 2021. 2, 3

[71] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected gans converge faster. Advances in Neural
Information Processing Systems, 34:17480–17492, 2021. 2

[72] Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen
Lombardi, Tomas Simon, Jason Saragih, and Yaser Sheikh.
The eyes have it: An integrated eye and face model for
photorealistic facial animation. ACM Trans. Graph., 39(4),
2020. 2

[73] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and An-
dreas Geiger. Graf: Generative radiance fields for 3d-
aware image synthesis. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Sys-
tems, 2020. 3

[74] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthe-
sis with sparse voxel grids. Advances in Neural Information
Processing Systems, 35:33999–34011, 2022. 3

[75] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey
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