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Abstract. Text-to-3D synthesis has recently emerged as a new approach
to sampling 3D models by adopting pretrained text-to-image models
as guiding visual priors. An intriguing but underexplored problem with
existing text-to-3D methods is that 3D models obtained from the sampling-
by-optimization procedure tend to have mode collapses, and hence poor
diversity in their results. In this paper, we provide an analysis and
identify potential causes of such a limited diversity, which motivates us
to devise a new method that considers the joint generation of different
3D models from the same text prompt. We propose to use augmented
text prompts via textual inversion of reference images to diversify the
joint generation. We show that our method leads to improved diversity
in text-to-3D synthesis qualitatively and quantitatively. Project page:
https://diversedream.github.io/
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1 Introduction

The realm of 3D content creation has persistently posed intricate challenges
within the domains of computer vision and computer graphics. Over time, various
methodologies have emerged to address this challenge. Traditional techniques
in generating 3D models often necessitate user interaction, involving meticulous
shaping of scene geometry and appearance through software like Blender [2].
Another prevalent avenue revolves around scene reconstruction using multi-
view geometry principles, extensively explored in literature such as [31]. These
approaches have garnered substantial adoption, particularly within industries
like interior design and computer animation, revolutionizing their workflows and
creative possibilities.

The rise of deep learning has led to increased interest in developing data-
driven techniques to automate 3D modeling. Several efforts have been made to
generate 3D models by learning directly from 3D data [51]. However, due to
the scarce availability of 3D data, it has been of great interest to explore the
generation of 3D data by learning from different modalities such as images and
natural languages. It has been shown that pretrained text-to-image diffusion
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A brightly colored mushroom growing on a log

A cocktail

A glowing lantern

A 3D model of an adorable cottage with a thatched roof

A small saguaro cactus planted in a clay pot

A birthday cake rendered in 3D

Fig. 1. We address the intriguing low-diversity issue in text-to-3D synthesis by re-
considering the text prompt used by variational score distillation [57]. We propose to
use reference images to sample augmented text prompts via textual inversion and use
these augmented text prompts to condition the particles in the variational inference
of text-to-3D optimization to learn more diverse 3D representations. Thanks to the
diversity in the reference images (top-left inline images), we obtain diverse 3D models
that inherit certain structures from their references.
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models can serve as a strong prior to guiding the optimization of a 3D model
represented by a neural radiance field in DreamFusion with SDS loss [38], from
which text-to-3D synthesis emerges as a promising research direction.

While text-to-3D synthesis has shown promises, challenges persist in fidelity,
diversity, convergence, and scalability of generated models. Efforts to address
these issues include enhanced loss functions like ProlificDreamer [57], generalized
across prompts in ATT3D [33], ATOM [39], ET3D [9], and personalized generation
in DreamBooth3D [42]. Diversity, however, remains largely unexplored in current
text-to-3D methods, with limited insight into its mechanisms.

In this paper, we explore methods to enhance the diversity of 3D model
generation in text-to-3D systems. We posit that the diversity of model outputs is
influenced by the objective function used, such as SDS [38] and VSD [57], when
conditioning 3D model generation on a text prompt. Motivated by this insight,
we propose a method to diversify text-to-3D generation results by augmenting the
original text prompt through textual inversion techniques [11, 14]. Our approach
involves sampling reference images from a pretrained text-to-image diffusion model
and extracting the corresponding text features via Textual Inversion. These text
features are then combined with the features of the original text prompts to guide
the optimization process for sampling 3D models. Experimental results (Fig. 1)
demonstrate a significant improvement in the diversity of generated 3D models
compared to state-of-the-art methods, both quantitatively and qualitatively.

In summary, our contributions are:
– An empirical analysis of the diversity of existing text-to-3D methods;
– A general technique based on augmented text embedding acquired from

textual inversion of 2D reference images to improve the diversity and speed
of the optimization process;

– Extensive experiments and ablation studies to demonstrate the validity and
robustness of our method, which is applicable to different text-to-3D methods.

2 Related Work

Text-to-image synthesis has seen significant advancements, with methods
relying on Generative Adversarial Networks (GANs) [3,23,47] and auto-regressive
models like DALL-E [43], Parti [61], and MUSE [6]. While GANs offer fast and
realistic image generation, they are prone to mode collapse. Recently, diffusion
models such as Stable Diffusion [44], DALL-E 3 [50], and Imagen [46] have
shown promise in synthesizing high-quality images. In this study, we utilize
diffusion-based models, particularly Stable Diffusion, as the pretrained 2D prior
to supervise our 3D model generation.

3D representation serves as the foundation for various 3D tasks like novel
view synthesis and content creation. Neural Radiance Fields (NeRFs) [34] have
gained traction for their volumetric rendering approach, learning 3D scenes from
2D images alone. Despite NeRF’s widespread use [55], its optimization process
is time-intensive [12]. To address this, researchers have explored hybrid scene
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representations like voxel grids [52, 60], hash-grids [35], tri-planes [4, 7], and
Gaussian splatting [25], aiming to improve speed and view synthesis performance.
Among these, hash-grids [35] are favored for text-to-3D tasks [38,57] due to their
fast training and superior performance compared to NeRFs. In this paper, we
leverage hash grids to learn diverse 3D scene representations from a single text
prompt using our proposed textual score distillation loss.

Image-to-3D generation is a crucial aspect of conditional generative 3D
models. Early methods like SynSin [59] and Free View Synthesis [36] rely on
differentiable neural renderers for single view synthesis but are limited by pose
distances and struggle with full 360°reconstructions from a single input. Recent
advancements have seen models like Zero-1-to-3 [31] pioneering open-world single-
image-to-3D conversion through zero-shot novel view synthesis, yet face challenges
with geometric consistency. Works such as One-2-3-45 [30], SyncDreamer [32],
LRM [17], LGM [53], and Consistent123 [58] address this by adding geometry-
constraint layers to improve consistency. However, these methods typically require
extensive 3D model datasets like ShapeNet [5] or large-scale multiview datasets
like Objaverse [10] for training. In contrast, our approach solely relies on a
pretrained text-to-image model for supervision, making it more accessible.

Text-to-3D generation has seen remarkable progress recently, leveraging pre-
trained text-to-image models like Stable Diffusion [44]. Early works like Dream-
Field [21] use CLIP [41] to align rendered images with input text but often
compromise on model quality due to CLIP’s limited semantic feature capture.
DreamFusion [38] substitutes CLIP loss with Score Distillation Sampling (SDS)
and introduces efficient gradient calculation for neural radiance field learning.
However, it tends to produce oversmooth surfaces and saturated colors. Subse-
quent methods aim to address these limitations by enhancing resolution [28],
appearance [8, 24,62,64], geometry [19,27,40,48,49], speed [20,27,54], and pho-
torealism [24,26,57,64]. Despite this progress, diversity in text-to-3D synthesis
remains underexplored, motivating our work.

Textual inversion. While recent text-to-image diffusion models like Stable
Diffusion [44] and DALL-E 3 [50] produce high-quality 2D images, they may not
preserve the subject’s shape or identity, known as “personalization”. Techniques
such as Textual Inversion [11] and DreamBooth [45] aim to maintain subject
identity in reference images by introducing a virtual token whose embedding can
be optimized to manipulate the generated images. HiPer inversion [14], building
upon Textual Inversion, enhances inversion by using a single reference image and
optimizing textual tokens in the text prompt to store object identity. Inspired by
this, we apply textual inversion to diversify generated 3D content.

3 Background

A typical approach to text-to-3D synthesis is to leverage the 2D prior from
a pretrained text-to-image model such as Stable Diffusion (SD) [44], to guide
the training of a 3D model represented by a neural radiance field (NeRF). In
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particular, a NeRF parameterized by θ is optimized so that its rendered images
x = g(θ, c), with g as the volumetric rendering function and c as the camera pose,
look realistic and conform to the text prompt y.

Score distillation sampling (SDS): DreamFusion [38] introduced the SDS
loss whose gradient is computed as:

∇θLSDS ≜ Et,ϵ,c

[
ω(t)(ϵSD(xt, t, y)− ϵ)

∂g(θ, c)

∂θ

]
, (1)

where ω(t) is a time-dependent weighting function, ϵSD is the predicted noise of
SD given the noisy input image xt = αtx+ σtϵ created by adding Gaussian noise
ϵ to the rendered image x at timestep t with noise scheduling coefficients αt, σt.
However, the SDS loss often suffers from over-saturation, over-smoothing, and
low-diversity issues as empirically analyzed in [57]. The low diversity issue in SDS
becomes apparent when multiple runs yield similar results empirically. Therefore,
we advocate the use of the more sophisticated variational score distillation
loss [57] for our exploration of the diversity of text-to-3D synthesis, which we
briefly describe below.

Variational score distillation (VSD): ProlificDreamer [57] mitigates the
limitations of DreamFusion by introducing a variational form of score distillation.
Their VSD loss aims to tackle the low-diversity issue by modeling the distribution
µ of 3D models θ generated from a single text prompt y as µ(θ|y). It’s worth
noting that SDS is a special case of VSD, where µ(θ|y) simplifies to a Dirac
distribution δ(θ−θ1), resulting in only a single 3D model θ1 for each text prompt.

To optimize VSD, the distribution µ is approximated by K learnable particles
where each particle i corresponds to a 3D representation parameterized by θi
which is sampled from a set of K particles {θi}Ki=1 for each training iteration,
following the particle-based variational inference framework. The gradient of the
VSD loss is as follows:

∇θiLVSD ≜ Et,ϵ,c

[
ω(t)(ϵSD(x

i
t, t, y)− ϵϕ(x

i
t, t, c, y))

∂g(θi, c)

∂θi

]
, (2)

where ϵϕ is a fine-tuned version of the original SD using the LoRA [18] parame-
terization ϕ on the rendered images of in-progress learning NeRFs. LoRA can be
regarded as the domain adaptation of SD to noisy images rendered from NeRFs
since SD is not originally trained on noisy images. Specifically, ϕ is trained with
the following objective:

min
ϕ

Et,ϵ,c

[
∥ω(t)(ϵϕ(xi

t, t, c, y)− ϵ)∥22
]
. (3)

Beyond its theoretical modeling of 3D representations as a distribution, an
empirical observation on why the VSD loss enhances the diversity compared to
the SDS loss is that the objective of VSD for each particle is different from each
other. Notably, the second term ϵϕ(x

i
t, t, c, y) (in Eq. (2)) dynamically changes

due to the learning progression of ϕ and the input image xi
t rendered from the

current particle θi.
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Fig. 2. We present a simulation of SDS (first row) and VSD (second row) in KL form
on a 1D toy dataset, where the ground truth distribution pSD(xt|y) is a 7-component
Gaussian mixture model. Results are shown at t = 1 (low noise data). In the third row
and forth row, varying pSD(xt|y′) with a new text prompt y′ leads to diverse outcomes
across different runs with SDS/VSD loss, motivating our approach.

Although the VSD loss addressed the limitation of SDS loss and clearly
improved the quality of the 3D representations, we empirically found that it still
yields limited diversity in some particular prompts. To further improve diversity,
we propose to use augmented text embedding guided by 2D reference images,
which is presented in the next section.

4 Our Approach

4.1 Analysis

Let us first motivate our method by an empirical analysis on the diversity of
SDS and VSD loss, the prevailing loss functions for generating 3D assets from a
given text prompt using a text-to-image model as prior. A notable drawback of
this technique is that the SDS loss often yields almost identical results across
different runs, primarily due to the mode-seeking behavior exhibited by the KL
divergence between a Gaussian distribution and a multi-modal landscape of the
text-to-image prior. More precisely, as shown from [38], the SDS loss in the KL
form is given by:

LSDS ≜ Et [KL(q(xt|x = g(θ, c))||pSD(xt|y))] . (4)

At a given time step t, q(xt|x) = N (αtx, σ
2
t I) represents a Gaussian distribution

characterizing the forward diffuse process of the rendered image, while pSD(xt|y) =
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p0SD(x0|y)q(xt|x0)dx0 denotes the marginal distribution of the diffusion model.

It is reasonable to assume that the distribution of the diffusion model exhibits
multimodality, particularly for lower values of t. Considering that q(xt|x) is
a unimodal distribution, it tends to align with the closest mode of pSD(xt|y),
as demonstrated by [1]. This behavior is particularly pronounced in 3D, as it
necessitates initializing the 3D scene as a Gaussian blob in each run. Consequently,
the initial parameters of NeRF θ tend to be closer to each other in successive
runs, resulting in low-diversity outcomes for SDS.

Meanwhile, the KL form of VSD (Eq. (5)) is nearly identical to SDS, albeit
the substitution of the unimodal Gaussian q(xt|x) with a more intricate, implicit
distribution qµ(xt|c, y) = Eµ(θ|y)[q(xt|x = g(θ, c))].

Lvsd ≜ Et [KL(qµ(xt|c, y)||pSD(xt|y))] (5)

By increasing the complexity of qµ, the optimized distribution qµ∗ will possess
a greater capacity to accurately fit the target distribution pSD(xt|y). The VSD
algorithm aims to draw data from µ∗(θ|y) to minimize Eq. (5) through particle-
based variational inference. As a result, the final 3D assets will exhibit a greater
degree of variety.

We elucidate our intuition in Fig. 2 by performing a simulation for SDS and
VSD on a 1D toy dataset, where pSD(xt|y) is a Gaussian mixture model (GMM)
comprising 7 components. We select a random position x as the optimizable
parameter for SDS, while the means and standard deviations of a 3-component
GMM µ(θ|y) serve as the optimizable parameters for VSD. Based on this analysis,
instead of modeling q(xt|x) as done in SDS and VSD, we propose a new way to
increase the diversity of the text-to-3D models by modifying the distribution
pSD(xt|y). Our idea is to diversify the condition y to y′ so that optimization
with the prior pSD(xt|y′) potentially yields a more substantial impact due to the
alteration in the optimization landscape.

4.2 Method Overview

To implement the idea of diversifying y, inspired by textual inversion methods [11,
14] for 2D object personalization, we aim to condition text-to-3D synthesis such
that the per-particle difference in ϵSD(x

i
t, t, c, y

′
i) is boosted by using different and

distinct prompt y′i for each particle θi. To this end, we devise a new approach
that leverages HiPer textual inversion [14] to enhance the resulting diversity.
Here we base our discussion on VSD, but the idea generalizes to SDS as well.

Our approach consists of two stages: HiPer tokens inversion and textual score
distillation. Firstly, we select a reference image xr

i for each particle and determine
an optimized HiPer token h∗

i . This token is chosen such that the reference image
can be faithfully reconstructed by the pretrained text-to-image diffusion model
with the prompt [y;h∗

i ], where [; ] denotes concatenation. In the second stage,
multiple particles θi are collectively optimized alongside a new shared domain
adapter ϕ, which is also encoded as a learnable token. This process forms the
augmented text prompt [y;h∗

i ;ϕ] for each particle. The algorithm is depicted in
Alg. 1 and illustrated in Fig. 3.
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Fig. 3. We translate the diversity of augmented text prompts to the resulting 3D models
via a two-stage method. Stage 1: HiPer tokens inversion (left): for each reference
image, we seek to learn a HiPer token hi so that the prompt [y;hi] reconstructs the
reference image. Stage 2: Textual score distillation (right): we run a multi-particle
variational inference for optimizing the 3D models from text prompt y. For each iteration
in the optimization, we randomly sample a particle θi with its rendered image xi. We
use the augmented text prompt y′

i = [y;h∗
i ;ϕ], with ϕ as shared embedding to condition

the optimization of θi (Eq. (8) and Eq. (9)).

4.3 HiPer tokens inversion

We first sample K reference images {xr
i }Ki=1 corresponding to K particles from

any text-to-image model given text prompt y. We empirically find that using
Stable Diffusion (SD) [44] with additional guidance like “X with white background”
gives the most suitable images for HiPer textual inversion. This is because we
only have one image for inversion and we want to exclude noisy factors like
background, facilitating faster and better textual inversion.

Subsequently, we want to optimize HiPer tokens for each reference image
using the technique in [14]. Specifically, given a reference image xr

i and a text
prompt y ∈ RL1×D with L1 as the number of text tokens and D as feature
dimensions, we seek to find HiPer tokens h ∈ RL2×D with L2 as the number of
HiPer tokens to reflects the personalized identity of the object in xr

i . To this end,
we append the learnable tokens hi to the original text prompt y to form new
text personalized text prompt yi = [y;hi] ∈ R(L1+L2)×D, and use HiPer [14] to
optimize hi with the objective:

min
hi

Et,ϵ

[
∥ω(t)ϵSD(x

r
t,i, t, [y;hi])− ϵ∥22

]
. (6)

Note that HiPer use Stable Diffusion (version 1.4) for textual inversion. This
stage is visualized in Fig. 3 (Left). The optimized h∗

i is leveraged as the key
component to diversify the results of text-to-3D synthesis in the next step.

4.4 Textual score distillation (TSD)

With the learned personalized text prompts yi = [y;h∗
i ], we are ready to use

them to replace the original text prompt y in any text-to-3D approaches such as
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Algorithm 1 Algorithm of DiverseDream.
Input: K particles, K reference images {xr

i }Ki=1 from prompt y, pretrained text-to-image
model ϵSD.
Stage 1: HiPer tokens inversion
1: initialize K HiPer tokens {hi}Ki=1.
2: for i=1 to K do
3: Optimize hi given xr

i following Eq. (6) to obtain h∗
i .

4: end for
5: return optimized {h∗

i }Ki=1

Stage 2: Textual score distillation
1: initialize K NeRFs {θi}Ki=1, shared learnable tokens ϕ.
2: while not converged do
3: Sample noise ϵ, camera pose c, timestep t, and index i, obtain θi, and form text

prompt y′
i = [y;h∗

i ;ϕ].
4: Render image xi = g(θi, c) from NeRF θi at pose c, and compute xi

t.
5: Update θi following Eq. (8).
6: Update ϕ following Eq. (9).
7: end while
8: return optimized {θ∗i }Ki=1

1 hour 2 hours 3 hours 4 hours 5 hours

Fig. 4. Optimization progress of VSD (upper) vs ours (lower). TSD with less #learnable
parameters converges faster than VSD. Prompt: “A high-quality ice cream sundae”.

ProlificDreamer [57] to enhance the diversity of these approaches. However, we
discover that the Domain Adaptor ϕ in ProlificDreamer, which is implemented
using LoRA [18], can be further replaced by the textual inversion technique like
HiPer [14]. This is similar to the problem of 2D object personalization where
LoRA Dreambooth [45] can be replaced by Textual Inversion [11] or HiPer [14]
with similar performance. The observation motivates us to devise a new Domain
Adaptor ϕ ∈ RL3×D in the form of shared learnable tokens in the text prompt
among particles. That is, the new personalized text prompt:

y′i = [y;h∗
i ;ϕ] ∈ R(L1+L2+L3)×D, (7)

where L3 is the number of shared learnable tokens. The new text prompt y′i can
replace the LoRA implementation ϕ of ProlificDreamer, resulting in the following
Textual Score Distillation (TSD):

∇θiLTSD ≜ Et,ϵ,c

[
ω(t)(ϵSD(x

i
t, t, yi)− ϵSD(x

i
t, t, y

′
i))

∂g(θi, c)

∂θi

]
. (8)
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Compared to the LoRA implementation, the term ϵSD(x
i
t, t, y

′
i) with shared

learnable tokens has the advantage of faster training speed since the number of
our learnable parameters ϕ (about 30K parameters) is much smaller than those
of LoRA (about 1.3M parameters). The training of the shared learnable tokens
is similar to the LoRA implementation, i.e., via a separate updating step from
the updating step of each particle as:

min
ϕ

Et,ϵ,c

[
∥ω(t)(ϵSD(xt, t, y

′
i)− ϵ)∥22

]
. (9)

In Fig. 3 (Right), we show how we train the sampled NeRF model θi and shared
token ϕ using the proposed TSD (Eq. (8)) and MSE (Eq. (9)) losses respectively.
As can be seen in the Fig. 4, our method can produce higher quality samples
than those produced by VSD [57] given the same amount of optimization time.

5 Experiments

Metrics. The common metrics for generative models such as FID [15] do not
separately measure fidelity and diversity.

Inspired by [56], we proposed to use a modified version of Inception Quality
(IQ) and Inception Variance (IV) to measure the quality and diversity of our
models. Our IQ and IV are formulated as follows:

IQ(θ) = Ei,c [H[p(y | xi = g(θi, c))]] , (10)
IV(θ) = H [Ei,c[p(y | xi = g(θi, c))]] , (11)

where p(y | xi = g(θi, c)) is the pretrained classifier given the rendered images
xi from particles i. The entropy H serves as an indicator of the classifier’s
confidence when presented with an input-rendered image. The IQ metric captures
the expected entropy, reflecting the classifier’s certainty across all views, which
indicates the image quality to some degree (the lower the better). Conversely, the
IV metric quantifies the entropy of the expected classifier outputs (the higher the
better). A higher IV score is achieved when the classifier outputs are uniformly
distributed, indicating greater diversity in the input images. We rendered 120
views for each particle to compute IQ and IV.

We also propose the Cosine Sim metric to quantify the diversity of our
particles. Specifically, for a given set of K particles, we render the same view for
each particle. The rendered images are then fed through a feature extractor (e.g.,
as DINO [63]) to obtain feature vectors. We then calculate the cosine similarity for
these feature vectors across

(
K
2

)
pairs and take the average. To ensure robustness,

we also average the results over 120 rendered views.

Implementation details. Our method is implemented with threestudio, an
open-source framework for text-to-3D synthesis [13]. We use K = 6 particles for
both VSD and our framework, TSD. The training of all experiments is conducted
for 50K iterations. We use L2 = 5 as HiPer tokens optimized in 1.4K iterations.
Also, we use L3 = 8 as shared learnable tokens ϕ and trained in 50K iterations.
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Fig. 5. Diversity comparison between SOTAs and our method.

For the camera embedding, we use the same implementation as threestudio [13].
Regarding the resolution, we train each particle at 256× 256 for all methods.

Table 1. Comparison with SOTAs

IQ ↓ IV ↑ Cosine Sim ↓

SDS [38] 3.695 4.577 0.720
VSD [57] 3.345 4.586 0.476

TSD (ours) 3.6145.075 0.380

Table 2. Study on #HiPer tokens.

#tokens IQ ↓ IV ↑ Cosine Sim ↓

1 3.375 4.908 0.403
5 3.790 4.886 0.415
10 4.4285.138 0.409
15 4.721 4.862 0.445
20 5.193 4.978 0.425

5.1 Comparison with Prior Methods

Baselines. We compare our method with two prominent text-to-3D methods
including DreamFusion [38] and ProlificDreamer [57]. Note that we do not
compare to other variants such as Magic3D [28] or Fantasia3D [8] since these
methods address different issues of SDS, which is orthogonal to our method
which focuses on diversity. For validation, we select a set of 60 text prompts from
DreamFusion [38] and 10 text prompts generated randomly from ChatGPT [37].

Quantitative comparison. We present our quantitative results in Tab. 1. It is
evident that we outperform VSD and SDS in terms of IV Score and Cosine Sim,
which measure the diversity between the particles. The IQ score of our method is
slightly lower than VSD, which demonstrates there remains some fidelity-diversity
trade-off, which is well known for existing text-to-image methods. Our method
outperforms SDS in both diversity and quality.
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Fig. 6. We demonstrate that our method remains effective for SDS.
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Fig. 7. Visual results with different numbers of HiPer tokens.

Qualitative comparison. The comparative results in Fig. 5 demonstrate that
our method offers more diversity among particles compared to VSD and SDS.
For example, when given “A high-quality ice cream sundae” prompts, VSD tends
to collapse into cone-shaped ice cream, while our method is capable of generating
glass shapes and other variants. Our 3D models inherit texture and structure
from reference images (see Fig. 1), showcasing the potential of transferring 2D
diversity to 3D through text prompt augmentation. Perfect inversion by HiPer
is not necessary; capturing the essence of reference images suffices for diversity
among personalized text prompts. Fig. 6 demonstrates the diversity of our results
when applying HiPer to the SDS loss.

5.2 Ablation Study

In this section, we undertake an ablation study to examine the factors that
influence our methods.

Number of HiPer tokens L2. We vary the number of the HiPer tokens from 1,
5, 10, 15, and 20 using the prompt “A DSLR photo of a frog wearing a sweater”,
Fig. 7 and Tab. 2 show that while altering token length has a subtle impact on
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Table 3. Ablation study of our method.

ϵϕ HiPer IQ ↓ IV ↑ Cosine Sim ↓Training time (hours)

LoRA No 3.345 4.586 0.476 10.23
LoRA Yes 3.662 5.109 0.355 9.50
Shared tokens Yes 3.614 5.075 0.380 7.16
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Fig. 8. Comparison between our HiPer inversion with LLM-generated augmentation
for text prompt sampling. It can be seen that the use of reference images in our method
leads to better fidelity and diversity.

the 3D model, the text-to-image model produces images more closely resembling
the reference in 2D.

LoRA vs. shared learnable tokens. We further validate the effect of our
shared learnable tokens. When replacing the LoRA layer with our learnable
tokens, our method can still achieve diverse results compared to SDS and VSD,
although the quality was not as good as our method with LoRA, as shown in
Tab. 3. However, the advantage of using shared learnable tokens is that it achieves
a better training speed compared to the use of LoRA.

LLM-based text prompt augmentation. In addition to personalized text
prompts obtained through image-to-text inversion using HiPer [14], we compare
our approach to a different text prompt sampling technique using large language
models (LLMs). Given an original text prompt y, we employ ChatGPT [37]
to generate K prompts from y, enriching the description of the object. For
instance, starting with “A high-quality photo of an ice cream sundae” as the
original prompt, we obtain an augmented prompt like “A high-quality photo
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Fig. 9. Our method also achieve remarkable diversity on 3DGS. We also show the
initialized point-cloud at the top right corner of each sample.

of an ice cream sundae with fresh berries and mint leaves”. Subsequently, we
utilize each of these prompts to condition the corresponding particle in the VSD
loss. The results, shown in Fig. 8, indicate that while LLM-based augmented
text prompts also lead to diverse 3D generations, their quality and diversity are
inferior compared to our image-to-text inversion method.

5.3 Extension to 3DGS

To expedite training, our approach can be extended to 3D Gaussian Splatting
(3DGS) [25]. Since the 3DGS method requires a point cloud to start the optimiza-
tion, we utilize recent generative text-to-3D approaches such as 3DTopia [16]
and Shape-E [22] to obtain the initial shapes for our training. Specifically, we
conducted experiments on 3DGS using the same initial shape from 3DTopia
and multiple initial shapes from Shape-E. As shown in Figure 9, our method
can generate high-quality and diverse 3D renderings using the 3DGS backbone.
The 3DGS representation, compared to Instant-NGP, significantly reduces the
training time from approximately 7 hours to about 2 hours when using 6 particles.

6 Discussion and Conclusion

Limitations: Despite enhancing the diversity of the existing VSD framework,
our model has limitations. It heavily relies on the HiPer inversion, which may
struggle with outlier reference images, resulting in 3D models with unusual shapes
and appearances. Also, our method shares VSD’s limitations, such as the Janus
problem, which can be addressed by orthogonal methods applicable to VSD.

Conclusion: In this paper, we have successfully introduced a new text-to-3D
synthesis method that focuses on diversifying the 3D generation by using 2D
reference images and textual inversion to build augmented text prompts for
conditioning the optimization. In future work, we plan to experiment with our
augmented text embedding technique for other text-to-3D methods [8, 29], and
more 3D representations [25].
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