
Flatness-aware Sequential Learning Generates
Resilient Backdoors

Hoang Pham1 , The-Anh Ta2 , Anh Tran3 , and Khoa D. Doan1

1 College of Engineering and Computer Science, VinUniversity
2 CSIRO’s Data61 3 VinAI Research

hoang.pv1602@gmail.com, khoa.dd@vinuni.edu.vn
theanh.ta@csiro.au, v.anhtt152@vinai.io

Abstract. Recently, backdoor attacks have become an emerging threat
to the security of machine learning models. From the adversary’s per-
spective, the implanted backdoors should be resistant to defensive al-
gorithms, but some recently proposed fine-tuning defenses can remove
these backdoors with notable efficacy. This is mainly due to the catas-
trophic forgetting (CF) property of deep neural networks. This paper
counters CF of backdoors by leveraging continual learning (CL) tech-
niques. We begin by investigating the connectivity between a backdoored
and fine-tuned model in the loss landscape. Our analysis confirms that
fine-tuning defenses, especially the more advanced ones, can easily push
a poisoned model out of the backdoor regions, making it forget all about
the backdoors. Based on this finding, we re-formulate backdoor training
through the lens of CL and propose a novel framework, named Sequential
Backdoor Learning (SBL), that can generate resilient backdoors. This
framework separates the backdoor poisoning process into two tasks: the
first task learns a backdoored model, while the second task, based on the
CL principles, moves it to a backdoored region resistant to fine-tuning.
We additionally propose to seek flatter backdoor regions via a sharpness-
aware minimizer in the framework, further strengthening the durability
of the implanted backdoor. Finally, we demonstrate the effectiveness of
our method through extensive empirical experiments on several bench-
mark datasets in the backdoor domain. The source code is available at
https://github.com/mail-research/SBL-resilient-backdoors
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1 Introduction

Swift progress in the field of machine learning (ML), especially within the realm
of deep neural networks (DNNs), is revolutionizing various aspects of our daily
lives across different domains and applications from computer vision to natu-
ral language processing tasks [5, 59, 60, 63, 70]. Unfortunately, as well-trained
models are now considered valuable assets due to the significant computational
resources, annotated data, and expertise spent to create them, they are be-
coming appealing targets for cyber attacks [6, 7, 44]. Prior studies have shown
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that DNN models are vulnerable to diverse attacks, from exploratory attacks
such as adversarial attacks [35, 58, 74] to causative attacks such as poisoning
attacks [25,65] and backdoor attacks [24,53,56]. Among these, backdoor attacks
have recently gained attention because of the increasing popularity of machine
learning as a service (MLaaS), where a model user outsources model training
to a more experienced ML service provider. In backdoor attacks, the adversary
injects a backdoor into the poisoned model by either contaminating the training
data [4, 10, 15, 24, 55, 56] or manipulating the training process [13, 14, 17, 21, 79].
This backdoored model is expected to behave normally on benign input, but
give a specific output, defined by the attacker, when the backdoor trigger ap-
pears on any input. Consequently, the attacker can deceive the model user into
integrating this poisoned model (with the hidden backdoor) into their systems
to gain illegal benefits or cause harmful damages [23,40,54,76].

Low loss for unseen clean Low loss for backdoor

Fig. 1: (a) Intuition for fine-tuning defense against conventional backdoor learning
(CBL): the backdoored model θB is pushed out of backdoor region (red area); (c)
Intuition for the success of our sequential backdoor learning (SBL) framework: θB is
trapped within the backdoor region that is hard to escape with fine-tuning. Figure b and
d visualize the loss and the accuracy on clean and poisoned test sets of intermediate
models when linearly interpolating between backdoored and fine-tuned models with
CBL and SBL.

As research on backdoor attacks advances, numerous defense strategies against
such attacks have been introduced. These defenses can detect the poisoned
model [20, 69], or remove the backdoors by knowledge distillation [31, 39], and
pruning [43, 71]. While being effective, these methods pose utility (e.g., non-
trivial drop in accuracy), and consistency (e.g., effectiveness dependent on net-
work architectures) challenges [80]. Recently, fine-tuning defenses [43, 80] have
shown promising performance in backdoor removals; furthermore, since the model
user usually does not use a pre-trained model as-is but will adapt it for their
problem, fine-tuning is likely a necessary step in many practical ML pipelines.
In particular, the user can fine-tune a pre-trained model using a small clean
dataset [43, 80], making it forget the implanted backdoor. As demonstrated in
Figure (1b), when we linearly interpolate from the backdoored model (with con-
ventional backdoor learning) to its corresponding fine-tuned model, the interme-
diate model’s poisoning loss (i.e., the loss recorded on the poisoned samples only)
increases, resulting in the decrease in Attack Success Rate (ASR) accordingly.
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Meanwhile, the corresponding clean loss and accuracy are stable. This indicates
that fine-tuning with clean data can move the poisoned model to the clean-only
region, explaining the effectiveness of existing fine-tuning defenses.

We take the perspective of the backdoor attackers and aim to investigate
backdoors that are resilient to fine-tuning based defenses. Our starting point is
the observation that the main reason for the effectiveness of fine-tuning defense
is the catastrophic forgetting property of DNNs [40] when models are continu-
ously trained on unseen clean data. The setting is then naturally connected to
Continual Learning (CL) - the learning paradigm that focuses exactly on miti-
gating catastrophic forgetting [2,9,33]. Thus, to counter the use of forgetting to
cleanse backdoors in fine-tuning defenses, our high-level idea is to leverage CL
techniques to craft backdoors that are hard to forget.

Specifically, we design a novel sequential learning procedure for backdoor
attack and propose a new framework, named SBL, for creating fine-tuning resis-
tant backdoored models. SBL separates the backdoor learning process into two
sequential tasks: the first task learns the backdoored model, while the second
task simulates fine-tuning defense on this model with a small set of clean data.
We augment the second task with CL techniques to guide the poisoned model
towards a low-loss, backdoored minimum (from θB0

to θB in Figure (1c)) where
it is difficult for the defender to remove the backdoor with fine-tuning defenses.

We additionally seek for flat backdoor region that can intensify the back-
door eliminating challenge for a fine-tuning defense, further strengthening the
durability of the implanted backdoor. Our goal is to trap the model in a flat
backdoored area that is hard to escape. We demonstrate the effectiveness of our
SBL in Figure (1d) revealing that as we interpolate linearly between the back-
doored and the fine-tuned models, the poisoning loss and ASR remain largely
constant. Meanwhile, the clean performance experiences a slight improvement
along the connectivity path.

In summary, our main contributions are:

(i) We propose a novel backdoor learning framework, named SBL, which in-
volves two sequential learning tasks, for generating resistant backdoored
models. The framework is inspired by the empirical observation that ex-
isting fine-tuning defenses can effectively push the backdoored model to a
backdoor-free region in the parameter space. Our learning framework can be
used to train existing backdoor attacks, further improving their resistance
against fine-tuning defenses.

(ii) We propose to formulate the second task from the continual learning per-
spective. This involves applications of existing CL techniques and a flatness-
aware minimization approach, both of which collaboratively strengthen the
resistance of the backdoor.

(iii) We perform extensive empirical experiments and analysis to demonstrate
the effectiveness of the proposed framework in improving the durability of
several existing backdoor attacks. This urges backdoor researchers to devise
defensive measures to counter this type of attack.
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2 Related Work

2.1 Backdoor Attacks

In backdoor attacks, the adversary aims to manipulate the output of the victim
model to a specific target label with input having pre-defined triggers [11, 19,
41, 61]. The backdoor injection process can be done by poisoning data [10, 24]
or maliciously implanting a backdoor during training [21, 79]. Gu et al [24] first
investigated backdoor attacks in deep neural networks and proposed BadNets.
It injects the trigger into a small random number of inputs in the training set
and re-labels them into target labels. After that various backdoor attacks focus
on designing the triggers. In particular, Chen et al [10] leverage image blending
in design trigger while Barni et al [4] use sinusoidal strips. WaNet [55] trains
a generator to create input-aware triggers. LIRA [13, 14] jointly learns trigger
generator and victim model to launch imperceptible backdoor attacks. Besides
data attacks, some works [21,79] perturb the weights of a pre-trained clean model
to inject a backdoor.

2.2 Backdoor Defenses

In general, backdoor defense methods can be divided into pre-training [67, 69],
in-training [38, 78], and post-training [31, 39, 43, 45, 80] stages. In pre-training
and in-training defenses, the defender assumes the dataset is poisoned, and thus
leverages the models’ distinct behavioral differences on the clean and poisoned
samples to remove the manipulated data or avoid learning the backdoor during
training. Most defensive solutions perform post-training defenses since it can
be more challenging to alter or, in some cases, not possible to participate in
the training process. Post-training defenses assume the defender has access to a
small set of benign samples for backdoor removal [30, 39, 43, 71, 80] and can be
roughly categorized into fine-tuning based defenses [39,43,80] and pruning-based
defenses [8,43,71]. Pruning-based defenses prune neurons [43,71] or weights [8] to
remove backdoor-contaminated components in the model. However, these meth-
ods either cause non-trivial drops in benign accuracy or their effectiveness de-
pends on the network architectures [80], significantly reducing their utility and
consistency. On the other hand, fine-tuning based defenses leverage the catas-
trophic forgetting phenomenon of DNNs [2, 33], when a backdoored model is
fine-tuned on clean data, for backdoor removal. In addition, fine-tuning is also
a common step in numerous practical ML systems to adapt a pre-trained model
to better align with the user’s needs. This paper focuses on developing a novel
backdoor learning approach that can enable existing backdoor attacks to be resis-
tant to conventional fine-tuning processes in practical applications and advanced
fine-tuning defenses.

2.3 Continual Learning

Continual Learning (CL) is a learning paradigm where the model learns a se-
quence of tasks. When tasks arrive, the model has to preserve previous knowledge
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while efficiently learning new tasks, which is known as the stability-plasticity
dilemma. There are three main approaches to dealing with this problem.

(i) Regularization approaches [1, 2, 33, 52, 68, 75] add explicit regularization
terms to penalize the variation of each parameter using its “importance" in
performing the old tasks.

(ii) Architecture-based approaches [26,48,49,72,73] assign specific parameters
for each task and even expand the base architecture when more parameters
are required.

(iii) Replay-based approaches [3,9,12,47,57] store a set of prior-task data and
use the stored data together with new-task data when learning on new tasks.

Our method views backdoor attack and defense as a continual learning prob-
lem, where backdoor learning is the first task, and fine-tuning on clean, unseen
data is another task.

2.4 Mode Connectivity and Sharpness-Aware Minimization

Loss landscape has been investigated to understand the behavior of DNNs [18,
22, 37]. Hochreiter et al [28] show that flat and wide minima generalize better
than sharp minima. Recently, SAM [18] and its variants [36,46,77] improve gen-
eralization by simultaneously minimizing both the loss value and loss sharpness.
This property is leveraged to mitigate forgetting in CL methods [12,51]. Besides,
Mode Connectivity [16, 22], a novel tool to understand the loss landscape, pos-
tulates that different optima obtained by gradient-based optimization methods
are connected by simple low-error path (i.e., low-loss valleys). Mirzadeh et al [50]
observe that there exists a low-error path connecting multi-task and continual
learning minima when they share a common starting point. Motivated by this
observation, the works in [42, 50] propose methods to guide the model towards
this connectivity region.

3 Methodology

3.1 Threat Model

We adopt the commonly-used backdoor-attack setting where the attacker trains
a model and provides it to the victim [13, 40]. Since training large-scale neural
networks is empirical, data-driven, and resource-extensive, it is generally cost-
prohibitive for end-users, who consequently turn to third-party MLaaS plat-
forms [62] for model training, or simply clone pre-trained models from public
sources such as Hugging Face. This practice opens up opportunities for training-
control backdoor attacks, a serious security threat to victim users.

Attacker’s Capability. The attacker has full control of designing the triggers,
poisoning training data, and the model training schedule.

Attacker’s Goal. The attacker aims to implant a backdoor into the model and
bypass post-training defense methods, especially fine-tuning defenses.
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Defender’s Goal. Focusing on the recent fine-tuning defenses, we assume that
the victim is given a pre-trained backdoored model, and has access to a small,
clean dataset. The defender’s goal is to then fine-tune the model on the clean
data to remove potentially hidden backdoors while adapting and maintaining
the model’s performance on their data.

3.2 Conventional Backdoor Learning

We consider supervised learning of classification tasks where the objective is to
learn a mapping function fθ : X → C with the input domain X and the set
of class labels C. The task is to learn the parameters θ from training dataset
D = {(xi, yi) : xi ∈ X , yi ∈ C, i = 1, 2, ..., N} using a standard classification loss
L such as Cross-Entropy Loss. The most common training scheme for backdoor
attacks uses data poisoning to implant backdoors, where the classifier is trained
on Dp - a mixture of clean and poisoned data from D. The general procedure
to generate poisoned data is to transform a clean training sample (x, y) into
a backdoor sample (T (x), η(y)) with some backdoor injection function T and
target label function η. Backdoor training manipulates the behavior of f so
that: f(x) = y, f(T (x)) = η(y).

It is well-established that such training can cause the models to converge to
the backdoor regions. However, empirical evidence [43] (see also our Figure 2)
suggests that even a simple fine-tuning process with a small set of clean data can
lead the model to an alternative local minimum that is free of backdoor while
preserving the model’s performance on clean data.

3.3 Proposed SBL Framework

This paper views backdoor learning through the lens of continual learning (CL):
we re-formulate the attack and defense as the CL tasks. More precisely, the
attacker aims to develop resilient backdoors that remain even after the models
undergo fine-tuning defenses at the user’s site - this can be regarded as reducing
catastrophic forgetting in CL; while the defender strives to relocate the models
away from the backdoor region without compromising performance on clean data
- leveraging catastrophic forgetting to remove backdoors.

To challenge the effectiveness of fine-tuning defenses, our key idea is to sim-
ulate this defense mechanism during the training phase of backdoor learning
to familiarize our models with clean-data fine-tuning, which reduces the effect
of forgetting during any subsequent fine-tuning defenses. In particular, we split
the training data Dp into two sets D0 and D1, where D0 is a combination of
clean and poisoned data while D1 contains only clean samples. Then, we divide
backdoor training into two consecutive tasks: first to learn the backdoor, then
familiarize it with fine-tuning. In the first step, we learn a backdoored model
θB0

on D0 by utilizing Sharpness-Aware Minimization (SAM) [18,36] on the loss
LSAM (D0; θ). Since a flatter loss landscape is known to reduce catastrophic for-
getting [12, 51], this training strategy will seek a flat backdoor loss landscape,
consequently limiting the model’s ability to forget backdoor-related knowledge
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during fine-tuning defenses with clean data. In the second step, we continue to
train θB0

(found in Step 0) on D1 with relatively small learning rate and the
additional CL regularization to force the model to converge into a low clean loss
basin but deeper within the backdoor’s effective area:

L1 = L(D1; θ) +R(θB0 , θ) (1)

Algorithm 1 Sequential Backdoor Learning (SBL)
1: Input: Training data D0, D1, model’s parameters θ
2: Output: Backdoored model θB
3: Initialize model parameter θ
4: Step 0: Learning the first task
5: θB0 ← argmin

θ
LSAM (D0; θ)

6: Step 1: Fine-tuning on clean data with constrains
7: Set θ ← θB0

8: θB ← argmin
θ
L(D1; θ) +R(θB0 , θ)

9: Return: θB

3.4 On the working mechanism of our method SBL

The proposed method SBL is designed based on our intuition that to neutralize
the effect of fine-tuning defenses, we can train the model so that it converges to
backdoored regions having flat loss landscapes. Flatness then can cause the fine-
tuned model in Step 1 (usually with small learning rates) to still be trapped in
the region of backdoor knowledge, which makes our attack resilient to fine-tuning
defenses. Here, we provide further heuristic explanations based on observations
from continual learning and mode connectivity, and confirm with empirical ev-
idence that the behaviors of our approach closely align with these intuitions.
Additional analysis in terms of Taylor expansions is given in the Appendix.

We regard the Algorithm 1 of SBL as a two-step procedure: multi-task (MT)
training (Step 0) followed by continual learning (CL) (Step 1). More precisely,
SBL first trains the backdoored model θB0

on both clean and poisoned data
(MT), then fine-tunes θB0

with clean data and a tiny learning rate to obtain θB
(CL). Denote θF the model obtained with a fine-tuning defense afterward.

First, we calculate the losses and accuracies of models trained with SBL
along various connectivity paths and compare them to those obtained with con-
ventional backdoor learning (CBL) models. We perform experiments on two
settings: ResNet18 model on CIFAR-10 and GTSRB, with BadNets as the base
attack. In Figure 2, the first column visualizes the loss and accuracy on the clean
and poisoned test sets, where we linearly interpolate between a backdoored and
fine-tuned model in the CBL setup. While the clean loss and accuracy remain
unchanged, the poison loss gradually increases and the corresponding ASR de-
creases to nearly zero on the fine-tuned model. This indicates that with CBL,
fine-tuning can effectively push the poisoned model out of the backdoor-affected
area. On the other hand, the persistently high ASR and low poison losses in
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the third column of Figure 2 (interpolations between θB and θF ) show that our
SBL method can trap backdoored model in backdoored region that is difficult
to escape from.

Recent works [42,50] have established that there are low-error pathways con-
necting minima of MT solutions and CL solutions. In SBL, Step 1 is designed to
seek a low-error path to guide our model to a flat backdoored solution. Empiri-
cally, we observe in Figure 2 that SBL can identify low-error pathways connecting
multi-task model (θB0

) to continual learning model (θB) (the second column),
and from θB to the fine-tuned model (θF ) (the third column). In addition, we
empirically show in Figure 3 that gradients’ norm during fine-tuning defense on
clean data remains small, which directly mitigates the forgetting of backdoor
knowledge.
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Fig. 2: The loss and the accuracy on clean and poisoned test sets of intermediate
models when linearly interpolating between models. The first column is between back-
doored and fine-tuned models in conventional backdoor learning, the second column
is between models in the first (θB0) and second task (θB), while the last column is
between backdoored and fine-tuned models in our SBL framework.

4 Experiments

4.1 Experiment Setting

Datasets. We use three benchmark datasets in backdoor research, namely CIFAR-
10 [34], GTSRB [29], and ImageNet-10 for the experiments. We follow [32] to
select 10 classes from ImageNet-1K [64]. We divide the training set into three
subsets: mixed set D0 (poisoned and benign samples), clean set D1, and defense
set with portion 85% - 10% - 5%, respectively.

Models. We use the same classifier backbone ResNet18 [27] for all datasets.
We also employ different architectures (in ablation studies): VGG-16 [66] and
ResNet-20, a lightweight version of ResNet. We use SGD optimizer for training
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the backdoored model and SAM [18] for training the first task. We set the
learning rate to 0.01 in the first task and 0.001 in the second task. We train the
backdoored model for 150 epochs in Step 0 and for 100 epochs in Step 1.

Backdoor Attacks. We consider representative backdoor attacks, including
BadNets [24], Blended [10], SIG [4], and Dynamic [55]. For BadNets, we use a
random-color, 3 × 3 square at the bottom right corner as the backdoor trigger
on all datasets. We use pre-trained generators from [55] to generate poisoned
images for Dynamic Attack. In all experiments, we poison 10% of training data
and set the targeted class to label 0.

Defense Methods. We evaluate the persistence of the backdoored models
against fine-tuning-based defenses, including standard finetuning [43] and the
advanced finetuning approaches, SAM-FT [80] and NAD [39]. For standard fine-
tuning, we use SGD with two learning rates 0.01 and 0.005; similarly, for SAM-
FT, we set the learning rate to 0.005. We fine-tune these models for 50 epochs.
For NAD, we fine-tune the teacher and student using a learning rate of 0.01 for
20 epochs.

Backdoor Training Methods. Here, along with original backdoor training,
we select several CL techniques to incorporate into our SBL framework to train
backdoored models including Naive, EWC [33], Anchoring [79], and AGEM [9].

Evaluation Metrics. We use two common metrics to evaluate the performance
of the backdoored models: Clean Accuracy (CA) to measure the performance
on benign samples and Attack Success Rate (ASR) to measure the proportion
of backdoor samples that are successfully misclassified to the targeted label.

Additional experimental details are provided in Appendix.

4.2 Backdoor Performance

We verify the effectiveness of SBL by comparing it against the standard back-
door training using different fine-tuning defenses. We conduct the experiments
on three datasets, including CIFAR-10, GTSRB, and Imagenet-10 with 10%
poisoning rate, and with ResNet18. In Step 1, we train the backdoored model
θB0 obtained in Step 0 with different CL methods. The results are presented in
Table 1, 2, and 3, respectively. Due to the space limit, we present the SBL’s
experiments with Anchoring in the Appendix.

In the CIFAR-10 and GTSRB settings, for conventional backdoor training,
fine-tuning with a lower learning rate (0.005) can better preserve the model’s
utility but fails to effectively mitigate the backdoor. In contrast, fine-tuning
with a larger learning rate (0.01) can effectively eliminate backdoors but comes
at the cost of sacrificing clean-data performance. Both FT-SAM and NAD can
maintain high clean accuracy while effectively mitigating backdoors. On the
other hand, SBL significantly enhances the backdoor’s resilience against all the
previously mentioned defensive methods. With different CL techniques, SBL
effectively circumvents these defenses.
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In the case of ImageNet-10, although fine-tuning defenses with learning rates
in our setting successfully eliminate the effect of backdoors in Original baselines,
it has to sacrifice the model’s utility. Learning backdoored model via SBL can
significantly improve the resistance against these fine-tuning defenses, most of
them still achieve at least 60% ASR while the CA is almost above 70%. We
attribute this improvement to the effect of flat minima discovered by our SBL.

Table 1: The resilience against fine-tuning defenses in setting ResNet18 on CIFAR-10.

Attack Training Step 0 Step 1 FT SGD-0.005 FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

Badnets

Original 91.54 99.64 90.17 14.08 88.68 1.79 89.19 1.21 90.25 2.50
SBL w. Naive 92.58 100 91.64 100 91.64 100 91.43 100 91.43 100 91.52 100
SBL w. EWC 92.58 100 92.09 100 91.90 100 91.68 100 91.55 100 91.75 100
SBL w. AGEM 92.58 100 92.22 100 91.90 100 91.67 100 91.62 100 91.74 100

Blended

Original 91.62 100 91.07 58.30 89.79 8.48 89.50 22.29 90.60 33.13
SBL w. Naive 91.91 100 91.23 100 91.25 100 91.10 100 91.19 100 91.09 100
SBL w. EWC 91.91 100 91.80 100 91.78 100 91.56 100 91.44 99.98 91.51 100
SBL w. AGEM 91.91 100 91.86 100 91.80 100 91.54 100 91.53 99.98 91.55 100

SIG

Original 91.22 99.94 91.46 0.57 89.59 0.38 90.07 0.57 90.22 0.51
SBL w. Naive 92.09 99.96 91.29 99.06 91.03 99.93 91.06 95.98 91.00 96.97 90.96 97.94
SBL w. EWC 92.09 99.96 91.81 99.38 91.63 99.29 91.69 97.96 91.63 97.61 91.73 99.28
SBL w. AGEM 92.09 99.96 91.91 99.16 91.61 98.19 91.66 97.94 91.59 97.17 91.71 99.23

Dynamic

Original 91.15 99.96 91.16 23.58 89.91 6.93 89.65 5.51 90.26 13.79
SBL w. Naive 91.96 99.94 91.35 99.49 91.63 100 91.73 99.89 91.64 99.85 91.22 99.89
SBL w. EWC 91.96 99.94 91.49 99.99 91.38 99.94 91.24 99.94 91.47 99.94 91.29 99.85
SBL w. AGEM 91.96 99.94 91.81 100 91.54 100 91.69 99.89 91.54 99.99 91.30 99.99

Qualitative Analysis of SBL’s Effectiveness. To explain how the back-
doors implanted by SBL can evade fine-tuning defenses, we examine the gradi-
ents’ norm during the fine-tuning process for both CBL’s and SBL’s backdoored
models. Figure 3 shows the gradient norms of ResNet18 on CIFAR-10 and GT-
SRB. We can observe that in the early stage of fine-tuning, the gradient norm
values of CBL are substantially higher than those of SBL. Higher values sug-
gest that the fine-tuned model can more easily be pushed further away from
the backdoored minimum, making it easier for the fine-tuning defenses to find
backdoor-free local minima.

4.3 Ablation Studies

Architecture Ablation. We evaluate SBL’s effectiveness on different network
architectures, including VGG-16 and ResNet-20 (a lightweight version of ResNet).
The experiments are conducted on CIFAR-10 and GTSRB with various attacks
while SBL uses EWC. Tables 4 and 5 show the backdoor’s performance against
various fine-tuning defenses. We observe similar effectiveness in SBL with these
network architectures, confirming that SBL can successfully enhance the dura-
bility of the backdoored models against finetuning defenses.
Role of Continual Learning. As discussed in Section 3.3, the CL design of
SBL helps learn a backdoored model that is resistant to catastrophic forgetting
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Table 2: The resilience against fine-tuning defenses in setting ResNet18 on GTSRB.

Attack Training Step 0 Step 1 FT SGD-0.005 FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

Badnets

Original 96.62 99.99 97.30 93.31 97.21 3.09 97.17 1.03 97.36 0.20
SBL w. Naive 98.15 100 97.99 100 97.65 100 97.24 100 96.59 100 98.21 100
SBL w. EWC 98.15 100 98.12 100 98.04 100 98.04 100 97.95 100 98.34 100
SBL w. AGEM 98.15 100 98.16 100 98.04 100 98.04 100 97.95 100 98.25 100

Blended

Original 96.71 99.97 97.19 52.74 96.46 1.86 96.15 0.15 95.44 7.12
SBL w. Naive 98.32 100 98.27 100 98.13 100 97.81 100 97.84 99.84 98.31 100
SBL w. EWC 98.32 100 98.12 100 98.21 100 98.31 100 98.21 100 98.44 100
SBL w. AGEM 98.32 100 98.21 100 98.22 100 98.31 100 98.21 100 98.42 100

SIG

Original 96.47 99.99 95.95 2.86 93.41 0.14 94.71 0 95.47 1.29
SBL w. Naive 98.27 100 98.23 99.99 97.88 99.99 97.67 99.92 96.41 98.53 98.12 100
SBL w. EWC 98.27 100 98.14 100 98.15 100 98.13 100 98.17 100 98.11 100
SBL w. AGEM 98.27 100 98.19 100 98.15 100 98.14 100 98.17 100 98.12 100

Dynamic

Original 96.17 99.98 96.66 0.15 95.23 0.02 57.43 0.01 97.09 0.06
SBL w. Naive 98.37 100 98.32 99.92 98.06 100 98.04 100 98.05 100 98.19 100
SBL w. EWC 98.37 100 98.23 100 98.08 100 90.02 100 98.04 100 98.21 100
SBL w. AGEM 98.37 100 98.22 100 98.08 100 98.03 100 98.01 100 98.20 100

Table 3: The resilient against fine-tuning defenses in setting ResNet18 on ImageNet-
10.

Attack Training Step 0 Step 1 FT SGD-0.005 FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

Badnets

Original 89.65 99.36 73.27 6.71 51.38 10.47 41.03 5.23 37.08 6.79
SBL w. Naive 89.46 99.91 88.65 99.83 85.69 91.54 76.96 70.43 69.77 73.68 83.08 84.96
SBL w. EWC 89.46 99.91 89.15 100 87.08 99.83 85.19 76.54 73.69 74.03 83.62 86.28
SBL w. AGEM 89.46 99.91 89.31 100 87.27 99.96 83.12 75.64 70.23 71.07 83.04 87.95

Blended

Original 89.12 99.70 72.35 2.91 59.00 6.88 44.92 12.65 66.08 1.41
SBL w. Naive 88.5 98.8 86.23 95.78 84.85 79.10 78.62 59.48 72.16 64.53 79.46 36.41
SBL w. EWC 88.5 98.8 88.12 97.35 86.23 81.67 81.88 74.06 76.38 73.42 82.96 46.79
SBL w. AGEM 88.5 98.8 88.31 97.74 86.19 82.35 83.85 69.02 74.88 70.3 81.73 62.95

SIG

Original 89.27 99.87 75.38 1.67 55.50 7.82 48.92 11.37 63.31 5.00
SBL w. Naive 89.5 99.83 85.69 94.27 85.58 69.15 80.38 60.81 66.31 45.21 82.50 73.89
SBL w. EWC 89.5 99.83 89.23 99.83 87.38 97.56 83.00 76.79 74.62 57.74 81.38 88.29
SBL w. AGEM 89.5 99.83 89.23 99.83 87.35 97.61 82.92 76.84 70.92 70.17 80.81 87.35

Table 4: Ablation study on different architectures with CIFAR-10 dataset.

CIFAR-10 Training No Defense FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR

R
es

N
et

-2
0

Badnets 86.15 99.99 85.49 3.51 85.07 2.21 84.36 12.19
Badnets w. SBL 87.78 99.99 86.96 99.44 86.84 99.74 86.74 98.93
Blended 87.08 99.9 86.42 52.07 86.19 25.52 85.61 39.98
Blended w. SBL 87.77 99.98 87.21 96.39 86.83 96.12 86.88 96.06
SIG 86.60 99.93 85.92 1.18 84.73 0.18 84.73 1.21
SIG w. SBL 87.82 98.92 86.98 88.77 86.99 90.79 87.33 88.89

V
G

G
-1

6

Badnets 88.04 99.97 86.93 3.20 86.2 1.88 88.12 1.34
Badnets w. SBL 90.19 100 89.04 100 89.18 100 88.99 100
Blended 89.38 99.98 88.15 9.73 87.19 16.72 88.33 11.74
Blended w. SBL 90.63 100 90.12 100 90.13 100 90.25 100
SIG 88.26 98.88 87.55 0.70 86.29 0.41 88.87 1.39
SIG w. SBL 90.16 99.99 90.10 99.98 90.12 99.99 90.13 99.97
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Fig. 3: Gradient norm comparison between conventional backdoor learning and our
framework during defense fine-tuning with SGD-0.01 from the backdoored model.

Table 5: Ablation study on different architectures with GTSRB dataset.

GTSRB Training No Defense FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR

R
es

N
et

-2
0

Badnets 95.96 100 95.87 1.36 95.93 0 94.96 0.06
Badnets w. SBL 97.23 100 97.06 100 97.07 100 97.21 100
Blended 95.70 99.89 95.67 47.22 95.69 73.54 92.91 85.86
Blended w. SBL 97.14 100 96.94 100 96.97 100 97.43 99.92
SIG 96.32 99.89 94.76 6.23 95.19 11.15 93.52 40.52
SIG w. SBL 96.74 99.99 96.92 99.98 97.05 99.98 96.98 99.98

V
G

G
-1

6

Badnets 96.24 100 95.50 3.80 94.57 3.22 95.96 4.61
Badnets w. SBL 97.58 100 97.47 100 97.52 100 97.46 100
Blended 96.25 100 95.15 17.06 93.37 6.48 96.00 21.34
Blended w. SBL 97.17 100 97.12 100 97.25 100 97.68 100
SIG 96.71 99.98 94.69 0.62 93.64 7.10 95.46 64.18
SIG w. SBL 96.90 100 96.98 100 96.96 100 97.46 100

of backdoor knowledge in a subsequent fine-tuning process. To validate the im-
portance of CL, we study the effectiveness of SBL with different CL techniques,
including Naive, EWC, Anchoring, and AGEM, but without SAM on CIFAR-10
and GTSRB. We present the results with BadNets attack in Table 6. As can
be observed, leveraging CL can improve the resistance of a backdoored model
against SGD-finetuning or NAD, compared to conventional training. Specifically,
during learning the second task with benign samples, while naive fine-tuning
(Naive) can increase the durability of the backdoor, fine-tuning with CL ex-
hibits significantly better resistance. On FT-SAM, however, the backdoors fail to
persist. A possible explanation for the effectiveness of FT-SAM is that backdoor
training with normal optimizers (e.g., SGD, Adam) creates backdoor-related neu-
rons with high weights’ norms [80], and FT-SAM additionally leverages SAM in
its fine-tuning process to shrink the norms of these backdoor-related neurons.
Role of Sharpness-Aware Minimizer. In SBL, SAM is utilized to guide the
backdoored model towards flat backdoor regions, which helps mitigate catas-
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Table 6: Ablation study on the role of Continual Learning with BadNets.

BadNets Training Step 0 Step 1 FT-SGD 0.005 FT-SGD 0.01 NAD FT-SAM
w/o SAM CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

C
IF

A
R

-1
0 Original 91.54 99.64 90.17 14.08 88.68 1.79 89.19 1.21 90.25 2.5

Naive 90.2 100 91.66 99.99 91.46 93.71 91.21 23.19 90.88 42.22 91.51 2.84
EWC 90.2 100 91.69 99.99 91.36 96.31 91.01 40.52 90.84 80 91.27 6.13
Anchoring 90.2 100 91.65 99.99 91.46 99.58 91.15 85.73 91.06 58.39 91.22 9.34
AGEM 90.2 100 91.6 99.89 91.43 97.64 91.18 50.91 91.2 74.08 91.27 13.6

G
T

S
R

B

Original 96.62 99.99 97.3 93.31 97.21 3.09 97.17 1.03 97.36 0.2
Naive 96.43 99.96 98.01 99.74 98.08 87.02 98.06 42.89 98.1 87.5 98.17 0.25
EWC 96.43 99.96 98.01 99.85 98.08 97.56 98.23 86.65 98.04 95.43 97.8 0.42
Anchoring 96.43 99.96 97.81 99.99 98.06 95.59 98.1 92.63 98.07 96.49 98.16 16.5
AGEM 96.43 99.96 98.03 98.76 98.08 99.38 98.15 94.25 98.12 98.53 97.88 1.61

trophic forgetting of backdoors. We investigate the effectiveness of SAM training
by utilizing it in both conventional backdoor training (CBL) and our framework.
The results are reported in Table 7. As can be observed, the use of SAM can
enhance the durability of the backdoored models, even when combined with
standard backdoor training but only in some cases. The use of SAM in SBL,
however, exhibits consistent backdoor durability against all fine-tuning defenses.

Table 7: Ablation study on the role of SAM with ResNet-18 on CIFAR-10 setting.

Attack BadNets No Defense FT SGD 0.005 FT SGD 0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR CA ASR

CBL w. SAM 90.20 100 87.59 28.6 88.22 3.14 89.10 0.72 90.49 99.99
w/o SAM 91.54 99.64 90.17 14.08 88.68 1.79 89.19 1.21 90.25 2.5

SBL w. EWC w. SAM 92.09 100 91.90 100 91.68 100 91.55 100 91.75 100
w/o SAM 91.69 99.99 91.36 96.31 91.01 40.52 90.84 80 91.27 6.13

Ablation on learning the second task. To further understand the role of
learning the second task, we investigate the impact of the learning rate on this
process. We conduct experiments on CIFAR-10 with ResNet18, while BadNets
is the poisoning technique; we vary the value of the learning rate from 0.0005 to
0.01. In Table 8, we observe that, with smaller learning rates (<0.01) in Step 1,
the backdoored model can effectively circumvent the fine-tuning based defenses.
However, with larger learning rates, naively learning the second task will make
it similar to the process of fine-tuning defense, resulting in a significant drop
in ASR after the second task and the defense phase. On the other hand, EWC
remains effective in preventing the backdoor from being forgotten after learning
the second task and the fine-tuning defense. However, this effectiveness comes
at the cost of compromising clean performance. This experiment highlights the
role of small learning rates and the effect of CL methods, in particular EWC, in
mitigating backdoor forgetting.

Ablation on poisoning rate. Here, we perform ablation studies on the poi-
soning rate to understand the effectiveness of our SBL framework in generating
resilient backdoored models. In the previous experiments, we poisoned 10% of
the training data; in the new experiments, we reduced this poisoning ratio to 5%
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Table 8: The performance of backdoored model with different learning rates in the
second task when training in Step 1 from θB0 to θB on CIFAR-10 with ResNet18.

Step 1 LR Training Step 0 Step 1 FT SGD-0.01
CA ASR CA ASR CA ASR

0.0005 SBL w. Naive

92.22 100

91.69 100 91.66 100
SBL w. EWC 91.78 100 91.61 100

0.001 SBL w. Naive 91.64 100 91.52 100
SBL w. EWC 91.89 100 91.49 100

0.005 SBL w. Naive 91.23 100 90.57 100
SBL w. EWC 91.27 100 91.50 100

0.01 SBL w. Naive 89.76 7.07 89.76 6.34
SBL w. EWC 85.32 82.09 89.43 79.91

and 1% while evaluating the resistance of the models on GTSRB and CIFAR-10.
As we can observe in Table 9, even with 1% poisoning ratio, training with SBL
helps the backdoored model become resistant to fine-tuning defenses, including
the state-of-the-art fine-tuning defense FT-SAM [80].

Table 9: Ablation on the poisoning rate (Pr) on our framework SBL and original
training with BadNets

Dataset Pr Attack No Defense FT SGD-0.01 NAD FT-SAM
CA ASR CA ASR CA ASR CA ASR

C
IF

A
R

-1
0

1% BadNets 90.82 75.11 90.18 2.98 89.89 2.16 90.63 4.01
BadNets w. SBL 92.18 100 91.69 99.90 91.70 99.90 92.04 99.80

5% BadNets 90.27 100 89.16 1.74 89.20 1.73 90.42 3.38
BadNets w. SBL 91.95 100 91.80 100 91.65 100 91.94 100

G
T

S
R

B 1% BadNets 96.44 96.55 97.55 8.29 97.11 0.07 96.56 0.00
BadNets w. SBL 98.33 100 98.29 100 98.39 100 98.08 100

5% BadNets 97.48 100 97.35 3.16 97.23 0.00 97.77 0.01
BadNets w. SBL 98.35 100 98.31 100 98.38 100 98.11 100

5 Conclusion

In this paper, we approach backdoor attacks and defenses as continual learn-
ing tasks with a focus on mitigating backdoor forgetting. We introduce a novel
backdoor training framework that can significantly intensify the resilience of
the implanted backdoors when these models undergo different fine-tuning de-
fenses. This framework splits the backdoor learning process into two steps with
a sharpness-aware minimizer. This collaboration traps the poisoned model in
the backdoor regions that are difficult for existing fine-tuning defenses to find
alternative backdoor-free minima. We conduct extensive experiments on several
benchmark backdoor datasets to demonstrate the effectiveness of our framework,
compared to traditional backdoor learning. Our work exposes the existence of
another significant backdoor threat against fine-tuning defenses, and we urge
researchers to develop countermeasures for this type of attack.
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