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Abstract

Recent advances in neural topic models have
concentrated on two primary directions: the
integration of the inference network (encoder)
with a pre-trained language model (PLM) and
the modeling of the relationship between words
and topics in the generative model (decoder).
However, the use of large PLMs significantly
increases inference costs, making them less
practical for situations requiring low inference
times. Furthermore, it is crucial to simulta-
neously model the relationships between top-
ics and words as well as the interrelationships
among topics themselves. In this work, we
propose a novel framework called NeuroMax
(Neural Topic Model with Maximizing Mutual
Information with Pretrained Language Model
and Group Topic Regularization) to address
these challenges. NeuroMax maximizes the
mutual information between the topic repre-
sentation obtained from the encoder in neural
topic models and the representation derived
from the PLM. Additionally, NeuroMax em-
ploys optimal transport to learn the relation-
ships between topics by analyzing how informa-
tion is transported among them. Experimental
results indicate that NeuroMax reduces infer-
ence time, generates more coherent topics and
topic groups, and produces more representa-
tive document embeddings, thereby enhancing
performance on downstream tasks.

1 Introduction

Topic modeling (Hofmann, 1999; Blei et al., 2003;
Blei and Lafferty, 2006; Li et al., 2015; Srivas-
tava and Sutton, 2017; Bach et al., 2023; Zhao
et al., 2020) is a well-established task in natural lan-
guage processing (NLP) that involves uncovering
and extracting latent topics from extensive corpora,
thereby facilitating the comprehension and organi-
zation of unstructured data (Kherwa and Bansal,
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2019). Its diverse applications span across fields
such as text mining (Van Linh et al., 2017; Valero
et al., 2022), bioinformatics (Juan et al., 2020), and
recommender systems (Le et al., 2018) and stream-
ing learning (Ha et al., 2019; Nguyen et al., 2021;
Tuan et al., 2020).

Neural topic models (Srivastava and Sutton,
2017; Wang et al., 2022; Wu et al., 2023b, 2024b;
Zhao et al., 2020; Dieng et al., 2020) extend tra-
ditional topic modeling methods by incorporating
neural network structures, thereby enhancing scal-
ability and efficiency. Similar to Variational Au-
toencoders (VAEs) (Kingma and Welling, 2013),
neural topic models typically consist of two main
components: an encoder (inference network) and a
decoder (generative network). Recent research has
focused on improving these components, leading
to overall advancements in model performance.

Regarding the encoder, several studies have pro-
posed incorporating knowledge from pretrained
language models (Han et al., 2023; Bianchi et al.,
2021b) such as BERT (Devlin et al., 2019) and
GPT (Radford and Narasimhan, 2018). These mod-
els, trained on vast amounts of text data, effectively
capture linguistic patterns and contextual informa-
tion. This rich information can serve as input for
the encoder (Bianchi et al., 2021a; Han et al., 2023),
enhancing the topic models’ ability to generate co-
herent topics. However, despite such an advantage,
utilizing large pretrained models significantly in-
creases inference costs, which limits their utility in
scenarios requiring low inference time.

Concerning the decoder, a line of work has lever-
aged pretrained word embeddings to better capture
the semantics of the vocabulary (Dieng et al., 2020;
Zhao et al., 2020; Xu et al., 2023, 2022; Nguyen
et al., 2022a). Recently, (Wu et al., 2023b) de-
composed the topic-word distribution matrix into
word and topic embeddings, with the word em-
beddings initialized by pretrained knowledge. The
topic-word distribution is then modeled as the soft-
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max of the negative L2 distance between corre-
sponding embeddings. Additionally, their method
employs clustering regularization to group word
embeddings into clusters, with each cluster corre-
sponding to a topic, thereby mitigating the topic
collapse problem. While these approaches improve
efficiency in modeling word-topic relationships,
they lack adequate consideration for capturing se-
mantic connections between topics, resulting in a
topic embedding space that is difficult to interpret.

In response to these shortcomings, we propose
a neural topic model framework that leverages the
power of pretrained knowledge without incurring
expensive inference costs and effectively captures
semantic interrelationships at the topic level. First,
for the encoder, we hypothesize that the topic pro-
portions and embeddings derived from pretrained
language models should exhibit similar representa-
tional characteristics. By maximizing the mutual
information between these two variables, we inte-
grate contextualized information from pretrained
language models during training, thereby elimi-
nating the need for pretrained components at the
inference stage. Figure 1 presents the overall ar-
chitecture of our proposed encoder, which operates
without pretrained language models during infer-
ence. Second, inspired by (Van Assel et al., 2023),
we employ optimal transport (OT) to model the rela-
tionships between topics. Specifically, in line with
standard works (Wu et al., 2023b), we assume that
each topic carries an equal amount of information,
which is transported from one topic to another in a
manner that preserves the total information within
each topic. The learned transport plan elucidates
the connections between the topics. Additionally,
we assume that documents often encompass several
closely related themes, naturally grouping topics
into semantically related clusters. We enhance the
group relationship of topics by imposing a regular-
ization on the aforementioned transport plan based
on predefined topic cluster relationships derived
from topic clustering.

The rest of this paper is organized as follows:
Section 2 lists some related works in topic model-
ing and neural topic modeling. Some background
on neural topic models, mutual information max-
imization, and optimal transport is provided in 3.
Our proposed methodologies are introduced in 4.
Some experiments to illustrate the effectiveness of
the proposed method are reported in 5. Finally, our
discussion and conclusion are given in Section 6.

Figure 1: High-level architecture of our encoder.
Dashed line represent the part of our model that could
be excluded in inference time.

2 Related Work

Topic Models and Neural Topic Models. Tradi-
tionally, generative probabilistic models such as La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
and Probabilistic Latent Semantic Indexing (PLSI)
(Hofmann, 1999) have been utilized for topic mod-
eling. Numerous extensions of these models have
been proposed to accommodate various assump-
tions and settings (Duc et al., 2017; Nguyen et al.,
2019; Van Linh et al., 2022; Li et al., 2015; Nguyen
et al., 2022b; Blei and Lafferty, 2006; Bianchi
et al., 2021b). Recent advancements have inte-
grated topic models with Variational Autoencoders
(VAE) (Kingma and Welling, 2013) to improve
scalability and efficiency in the inference process
(Srivastava and Sutton, 2017; Dieng et al., 2020;
Wu et al., 2023a; Cvejoski et al., 2023; Wang et al.,
2022; Nguyen et al., 2024; Bianchi et al., 2021b;
Wu et al., 2024b). Due to the difficulty of sam-
pling the Dirichlet prior using the reparameteriza-
tion trick, a Laplacian approximation is utilized
in (Srivastava and Sutton, 2017). An alternative
method involves using rejection sampling varia-
tional inference for the Dirichlet prior (Burkhardt
and Kramer, 2019).

Within VAE architecture, two lines of research
aim at improving the two components of the model,
the encoder and the decoder. In both directions,
incorporating external knowledge like word em-
beddings has become a prevalent practice to en-
hance topic quality (Bach et al., 2023; Dieng et al.,
2020; Bianchi et al., 2021a; Grootendorst, 2022;
Sia et al., 2020). Regarding the decoder (or the re-
construction phase of topic modeling), (Dieng et al.,
2020) proposed using word embeddings, such as
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Word2Vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014), to gain a better understanding
of vocabulary semantics, thus creating topics with
more semantically related words. Various variants
of word embedding are considered; for example,
(Xu et al., 2023) utilized spherical embeddings to
improve clusterability, while (Xu et al., 2022) em-
ployed word embeddings in hyperbolic space for
topic taxonomy. In the embedding space, depen-
dency between words and topics is modeled as
a similarity function, such as dot product (Dieng
et al., 2020; Nguyen et al., 2022b), cosine simi-
larity (Zhao et al., 2020), or exponent of negative
L2 distance (Wu et al., 2023b). Additionally, (Wu
et al., 2023b) applied a clustering regularization
technique to ensure that each topic embedding acts
as the center of a distinct cluster of word embed-
dings, thereby mitigating the issue of topic col-
lapse.

In terms of encoders, pretrained language mod-
els (Devlin et al., 2019; Radford and Narasimhan,
2018) are another type of external knowledge fre-
quently incorporated. (Bianchi et al., 2021a,b) used
contextualized document embedding from SBERT
(Reimers and Gurevych, 2019) as input, captur-
ing valuable information in complement to bag-
of-word representation. (Han et al., 2023) further
employed SBERT to generate term weights that are
integrated into the reconstruction loss to filter out ir-
relevant words. These approaches lead to increased
inference time for neural topic models, which poses
challenges for real-time applications. An improve-
ment that does not rely on external knowledge in-
volves utilizing optimal transport distance to model
the disparity between documents and topics (Wang
et al., 2022; Zhao et al., 2020).

Along with the development of pretrained lan-
guage models, an alternate line of research in topic
modeling that does not employ a VAE-like architec-
ture directly group document’s embedding to gen-
erate topics (Grootendorst, 2022; Sia et al., 2020;
Zhang et al., 2022). Although this approach is sim-
pler and yields coherent topics, it is not trivial to
infer the topic proportions for a document.

Mutual Information Maximization. Mutual
information maximization has been extensively uti-
lized in machine learning to develop representa-
tions that encapsulate the intrinsic structure of data
(van den Oord et al., 2019; Hjelm et al., 2019).
For example, (Guo et al., 2022) employed this
method to mitigate catastrophic forgetting in contin-
ual learning, while (Radford et al., 2021) leveraged

mutual information to align text embeddings with
image embeddings. In the field of topic modeling,
mutual information maximization has been applied
to align topics across different languages (Wu et al.,
2023a) and to derive meaningful document repre-
sentations (Nguyen and Luu, 2021).

3 Background

Notations. X = {xi}Di=1 is a collection of D
documents. xiBoW,xiPLM are the correspond-
ing bag-of-words representation and pretrained
language model embeddig of document xi. V
is the number of unique terms in our vocabu-
lary. K is the number of desired topics to find.
β = (β1, . . . , βK) ∈ RV×K denotes the topic-
word distribution matrix. W ∈ RV×L,T ∈ RK×L

correspond to the word embeddings and topic em-
beddings, respectively. θi is the topic proportion
of document xi. 1N is a vector of length N where
every element is 1. JnK is the set of first n integers
{1, 2, . . . , n}. ∆n is the probability simplex in Rn:
∆n = {θ ∈ Rn|θi ≥ 0;

∑n
i=1 θi = 1}. The in-

ner product between two matrices A and B of the
same size is represented as ⟨A,B⟩ = ∑

i,j AijBij .
The inner product between two vectors is de-
fined similarly. H(P ) = −⟨P, logP − 1⟩ =
−∑

i,j Pij(logPij − 1) is the Shannon entropy of
P . The KL divergence between P and Q is defined
as KL(P∥Q) =

∑
i,j Pij log

(
Pij

Qij

)
− 1.

The objective of neural topic modeling is to iden-
tify K latent topics within X. Each topic is rep-
resented as a multinomial probability distribution
over the V vocabulary words, resulting in a topic-
word distribution matrix β ∈ RV×K . The matrix
β is then decomposed into two components: word
embeddings and topic embeddings (Dieng et al.,
2020; Xu et al., 2022). (Wu et al., 2023b) defined
the decomposition as follows:

βij =
exp

(
−∥wi − tj∥2/τ

)
∑K

j′=1 exp
(
−∥wi − tj′∥2/τ

)

where τ is a temperature hyperparameter. The
word embeddings W are typically initialized using
pre-trained word embeddings such as Word2Vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014).

Another objective of neural topic models is to
infer topic proportions for a document xi. (Srivas-
tava and Sutton, 2017; Bianchi et al., 2021a; Dieng
et al., 2020; Wu et al., 2023b) employ a VAE-like
architecture. Specifically, the topic proportion θ
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depends on a latent variable z, which conforms
to a logistic-normal distribution characterized as
p(z) = LN (z|µ0,Σ0). When considering a doc-
ument xi, its BoW representation, xiBoW, is sub-
jected to encoding through neural networks. These
networks furnish the parameters of a normal distri-
bution, with mean µi = hµ(xiBoW) and diagonal
covariance matrix Σi = diag (hΣ(xiBoW)). Lever-
aging the reparameterization trick (Kingma and
Welling, 2013), zi is sampled from the posterior
distribution q(zi|xi) = N (zi|µi,Σi) following
zi = µi +Σiε, where ε ∼ N (0, I). Subsequently,
softmax function is applied to z, yielding topic pro-
portion θi = softmax(zi). Following this, the Bag-
of-Words representation is reconstructed with the
topic-word distribution matrix β from a multino-
mial distribution x̂iBoW ∼ Multi (softmax (βθi)).
This comprehensive process is instrumental in
achieving our objective function for topic model-
ing, which consists of a reconstruction term and a
regularization term as follows:

LTM =
1

D

D∑

i=1

[
− (xiBoW)⊤ log(softmax(βθi))

+ KL (q(z|xi)∥p(z))
]
.

Other preliminary on mutual information maxi-
mization and entropic regularized optimal transport
can be found in Appendix A.3.

4 Proposed Method

We enhance both the inference network (encoder)
and the generative model (decoder) of neural topic
models through mutual information maximization
and group topic regularization, respectively. The
details will be presented in the subsequent subsec-
tions.

4.1 Maximize Mutual Information with
Pretrained Language Model

We design an architecture that preserves the knowl-
edge from a pretrained language model (PLM) in
the encoder, even after the PLM is removed. Our
approach is based on the assumption that the em-
beddings from the pretrained language model and
the topic proportions should exhibit high mutual
information. Specifically, let XPLM denote the dis-
tribution of the embeddings from the pretrained
language model and Θ represent the distribution of
topic proportions of the documents. The desired
property can be achieved by maximizing the mutual

information between these two random variables,
I(XPLM; Θ).

For tractability, we alternatively maximize its
lower bound (van den Oord et al., 2019):

I(XPLM; Θ) ≥ logB

+
1

D

D∑

i=1

log
ef(θi,xiPLM)

∑
θ′∈Bi

ef(θ′,xiPLM)

where Bi is a set containing sampled topic pro-
portions of document i, including a positive ex-
ample and negative examples for xiPLM. Bi is
chosen to be the set of topic proportions of docu-
ments in the same batch as xi, and therefore has
a size of B. The function f(θ, xPLM) quantifies
the similarity between the topic proportion θ and
the PLM’s embedding xPLM. Specifically, we use
f(a, b) = ⟨ϕθ(a),b⟩

∥ϕθ(a)∥·∥b∥ , where ϕθ are learnable linear
projections. As B is chosen to be a constant, we
therefore minimize the following InfoNCE loss:

LInfoNCE =
−1

D

D∑

i=1

log
ef(θi,xiPLM)

∑
θ′∈Bi

ef(θ′,xiPLM)

4.2 Group Topic Regularization
We now introduce a new topic regularization based
on optimal transport (OT) (Peyré and Cuturi, 2020)
for the decoder. Specifically, we assume that each
topic contains an equal amount of information and
conduct a process where information is transferred
between topics based on their relationships, ensur-
ing the total amount remains unchanged. This pro-
cess helps us learn the relationship between topics.
To make it easier to relate to the mass redistribution
problem in OT (Peyré and Cuturi, 2020), we use the
metaphor of K topics as K piles of soil, each with
an equal mass of 1

K . After transportation, the mass
of each pile of soil remains 1

K . The transporta-
tion cost between two topics is calculated based on
the distance between them in the embedding space.
The matrix C represents the transportation costs
for all pairs of topics. The optimal transport plan
Q reveals the relationships between topics.

Formally, let C ∈ RK×K be the cost ma-
trix in Euclidean space for topic embeddings
{t1, t2, . . . , tK}. The transport plan Q is the so-
lution to the following optimization problem:

minimize ⟨Q,C⟩ − ϵH(Q)

subject to Q ∈ RK×K ,

Q1K = Q⊤1K =
1

K
1K ,

Qi,i = 0 ∀i ∈ JKK.

(1)
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The regularization term ϵH(Q) encourages the ma-
trix Q to become dense, thereby facilitating the
sharing of information across multiple topics (Blon-
del et al., 2018). To focus on the interrelationships
between different topics, the constraint Qi,i = 0 is
imposed. In practice, we ensure that Qi,i remains
sufficiently small by setting Ci,i to a large value.
Subsequently, the Sinkhorn algorithm is employed
to solve the optimization problem (Cuturi, 2013).

Furthermore, given that documents are assumed
to be delivered in groups with similar semantic
meanings, it is assumed that topics also exhibit a
cluster structure. To enforce this structure, we in-
troduce a regularization term that aligns matrix Q
with matrix P , which encodes the shared informa-
tion between grouped topics, as follows:

LGR = KL (P∥Q) (2)

We propose a method to construct the matrix
P ∈ RK×K to represent the shared information
between grouped topics aligning on Q. Our goal is
to categorize the K topic embeddings into clusters
that reflect closely related semantic relationships.
In the initial training phases, word embeddings dis-
play minimal deviation from their initialized states,
thereby maintaining most of their semantic asso-
ciations and effectively guiding the development
of the topic embeddings. Leveraging this seman-
tic information, we employ the KMeans clustering
method (MacQueen et al., 1967) to partition the K
topics into G clusters. Subsequently, we establish
the matrix P̂ in the following manner:

P̂ij =

{
1 if topics i, j are the same cluster
u otherwise .

where the hyperparameter 0 < u < 1 controls the
ratio of shared information between topics within
different groups compared to those within the same
groups. We construct the final predefined matrix
P by normalizing P̂ so that the elements in each
row or column sum to 1

K . The normalization pro-
cess involves iteratively normalizing row-wise and
projecting onto the space of symmetric matrices.

4.3 Overall objective function

Our inference process and topic modeling loss func-
tion follow the conventional neural topic model, as
noted in Section 3. Additionally, inspired by (Wu
et al., 2023b), we employ the Embedding Cluster-
ing Regularization regularizer to mitigate the topic

collapsing problem:

LECR =
V∑

i=1

K∑

j=1

∥wi − tj∥2π∗
ij (3)

where π∗ is the solution of the following optimiza-
tion problem:

minimize ⟨CWT, π⟩ − νH(π)

s.t. π ∈ RV×K

π1K =
1

V
1V , π

T1V =
1

K
1K

(4)

where CWT ∈ RV×K is the distance matrix be-
tween word embeddings and topic embeddings. π∗

is obtained using the Sinkhorn algorithm (Cuturi,
2013). In summary, in addition to the topic model
objective, we use three loss functions: LECR to
capture word-topic relations, LGR to regularize
topic-topic relations, and LInfoNCE to enhance the
encoder.

We can now finalize our training process as a
two-stage approach. The first stage aims to produce
the matrix P for the group regularizer with the
following objective function:

Lstage1 = LTM + λECRLECR

+ λInfoNCELInfoNCE

(5)

In practice, the first training stage requires only a
few epochs to achieve effective topic groups. After
obtaining P as described in Section 4.2, we pro-
ceed to the second stage using the following loss
function:

Lstage2 = LTM + λECRLECR

+ λGRLGR + λInfoNCELInfoNCE

(6)

where λGR, λInfoNCE, λECR are weight hyperpa-
rameters. The full algorithm are described in Ap-
pendix A.1.

5 Experiments

5.1 Settings
Datasets. We employ 20 News Groups (20NG)
(Lang, 1995), a popular benchmark for topic mod-
eling, AGNews (Zhang et al., 2015), a corpus con-
tains news articles from more than 2000 sources,
IMDB (Maas et al., 2011), a dataset of movie re-
views, Yahoo Answers (Yahoo) (Zhang et al., 2015)
a dataset contains questions and answers from the
Yahoo! Answer website, and BBC (Greene and
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20NG BBC
NPMI NPMI− In Cp NPMI NPMI− In Cp

LDA ‡ 0.0057 0.0801 0.0727 -0.0746 -0.0199 -0.0684
ProdLDA ‡ -0.0158 -0.0610 -0.0429 0.0001 -0.0105 0.0647
ETM ‡ 0.0052 0.1219 0.0527 -0.0212 0.0441 0.0829
CTM ‡ -0.0161 0.1244 -0.1415 0.0436 0.0714 0.2543
ClusterTM ‡ 0.0135 -0.2870 0.0160 0.0255 0.0656 0.0588
BertTopic ‡ 0.0609 -0.0903 0.2318 -0.0007 0.0943 0.0747
UTopic ‡ 0.1069 0.1130 0.4850 0.0938 0.1256 0.5388
NeuroMax 0.0929 0.1810 0.4543 0.1288 0.2174 0.5310

Table 1: Topic coherence measures, for models containing 10 topics. Bold values and underlined values represent
the best and second-best results, respectively. ‡ Results resported in (Han et al., 2023).

20NG BBC
NPMI NPMI− In Cp NPMI NPMI− In Cp

LDA ‡ -0.0056 0.0661 0.0719 -0.0718 -0.0205 -0.0709
ProdLDA ‡ -0.0227 -0.0083 -0.0634 0.0084 0.0110 0.0569
ETM ‡ 0.0234 0.0927 0.1207 -0.0333 0.0251 0.0416
CTM ‡ -0.0086 0.1149 0.0156 0.0289 0.1109 0.3254
ClusterTM ‡ 0.0154 -0.2863 0.0082 0.0339 0.0990 0.0908
BertTopic ‡ 0.0322 -0.0563 0.1515 0.0456 0.0762 0.2556
UTopic ‡ 0.0653 0.1231 0.3709 0.0708 0.1018 0.3925
NeuroMax 0.0469 0.0904 0.3104 0.0742 0.1432 0.3938

Table 2: Topic coherence measures, for models containing 20 topics. Bold values and underlined values represent
the best and second-best results, respectively. ‡ Results resported in (Han et al., 2023).

Cunningham, 2006) - a corpus from BBC news
website in 2004 and 2005.

Evaluation Metrics. We follow the evaluation
methodology proposed in (Wu et al., 2023b) to
assess both the quality of topics and the quality
of document-topic distributions. Topic quality is
evaluated using measurements of topic coherence
and topic diversity. For topic coherence, we employ
CV, NPMI, and Cp, which are established metrics
in topic modeling known for their high correlation
with human judgment (Röder et al., 2015). These
coherence measures are computed using a version
of the Wikipedia corpus1 as an external reference
corpus. The NPMI measure is also computed using
the training dataset as a reference dataset (denoted
as NPMI− In). For topic diversity, we use the
proportion of unique words among the topic words.
Document-topic distribution quality is evaluated
using NMI and Purity (Manning et al., 2008) on
the document clustering task.

Baseline models. The first line of topic mod-
els not incorporating pre-trained language mod-
els includes: LDA, a probabilistic topic model

1https://github.com/dice-group/Palmetto/

introduced by (Blei et al., 2003), ProdLDA (Sri-
vastava and Sutton, 2017), a variant of the LDA
model that integrates Variational Autoencoders
(VAEs), ETM (Dieng et al., 2020), a neural topic
model that incorporates word embeddings, NSTM
(Zhao et al., 2020), which utilizes the Sinkhorn dis-
tance to model the discrepancy between document-
word distributions and document-topic distribu-
tions, WeTe (Wang et al., 2022), which alter-
nately employs a conditional transport distance,
and ECRTM (Wu et al., 2023b), which imple-
ments clustering regularization to improve topic
coherence and distinctiveness. A series of topic
models leveraging pre-trained language models in-
cludes two that employ a VAE-like architecture:
CTM (Bianchi et al., 2021a), which utilizes con-
textualized embeddings as inputs to the neural topic
model to capture richer semantic information, and
UTopic (Han et al., 2023), which integrates tf-idf
into the reconstruction loss to filter out unrelated
words in a topic. Additionally, there are two base-
line models that do not use a VAE-like architecture:
ClusterTM (Sia et al., 2020), which clusters doc-
uments based on their contextual embeddings and
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20NG Yahoo
CV TD Purity NMI CV TD Purity NMI

LDA † 0.385 0.655 0.367 0.364 0.359 0.843 0.288 0.144
ETM † 0.375 0.704 0.347 0.319 0.354 0.719 0.405 0.192
NSTM † 0.395 0.427 0.354 0.356 0.39 0.658 0.395 0.241
WeTe † 0.383 0.949 0.268 0.304 0.367 0.878 0.389 0.252
ECRTM † 0.431 0.964 0.560 0.524 0.405 0.985 0.550 0.295
Utopic 0.508 0.860 0.530 0.454 0.468 0.788 0.473 0.244
NeuroMax 0.435 0.912 0.623 0.570 0.404 0.979 0.588 0.331

IMDB AGNews
CV TD Purity NMI CV TD Purity NMI

LDA † 0.347 0.788 0.614 0.041 0.364 0.864 0.64 0.193
ETM † 0.346 0.557 0.66 0.038 0.364 0.819 0.679 0.224
NSTM † 0.334 0.175 0.658 0.040 0.411 0.8773 0.7719 0.324
WeTe † 0.368 0.931 0.587 0.031 0.383 0.945 0.641 0.268
ECRTM † 0.393 0.974 0.694 0.058 0.466 0.961 0.802 0.367
Utopic 0.429 0.554 0.550 0.005 0.545 0.838 0.768 0.303
NeuroMax 0.402 0.936 0.709 0.061 0.385 0.952 0.804 0.410

Table 3: Topic quality, quantified by mean CV and mean TD, and document-topic quality, evaluated using mean
NMI and mean Purity, for a model containing 50 topics. Bold values and underlined values represent the best and

second-best results, respectively. †Results reported in (Wu et al., 2023b).

20NG Yahoo
CV TD Purity NMI CV TD Purity NMI

LDA † 0.387 0.622 0.364 0.346 0.359 0.602 0.297 0.148
ETM † 0.369 0.573 0.394 0.339 0.353 0.624 0.428 0.208
NSTM † 0.391 0.473 0.383 0.363 0.387 0.659 0.405 0.242
WeTe † 0.352 0.742 0.338 0.348 0.353 0.544 0.444 0.269
ECRTM † 0.405 0.904 0.555 0.494 0.389 0.903 0.563 0.311
Utopic 0.523 0.750 0.545 0.452 0.476 0.612 0.549 0.305
NeuroMax 0.412 0.913 0.602 0.516 0.390 0.922 0.583 0.329

IMDB AG News
CV TD Purity NMI CV TD Purity NMI

LDA † 0.342 0.691 0.600 0.037 0.349 0.696 0.654 0.194
ETM † 0.341 0.371 0.648 0.037 0.371 0.773 0.674 0.204
NSTM † 0.34 0.255 0.659 0.039 0.421 0.832 0.764 0.359
WeTe † 0.293 0.638 0.589 0.025 0.363 0.827 0.699 0.271
ECRTM † 0.373 0.887 0.694 0.049 0.416 0.981 0.812 0.428
Utopic 0.534 0.656 0.553 0.004 0.548 0.681 0.760 0.283
NeuroMax 0.381 0.870 0.706 0.059 0.406 0.957 0.828 0.389

Table 4: Topic quality, quantified by mean CV and mean TD, and document-topic quality, evaluated using mean
NMI and mean Purity, for a model containing 100 topics. Bold values and underlined values represent the best and

second-best results, respectively. †Results reported in (Wu et al., 2023b).

utilizes term frequency (tf) to generate topic words,
and BertTopic (Grootendorst, 2022), which em-
ploys a class-based variation of tf-idf to generate
topic representations.

5.2 Topic Quality and Doc-Topic Distribution
Quality

We first conducted experiments to assess the ef-
ficacy of our approach in comparison to baseline
methods utilizing a pre-trained language model.
Specifically, we employed two datasets: 20 News
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20NG Yahoo
CV TD Purity NMI CV TD Purity NMI

ECRTM 0.431 0.964 0.560 0.524 0.405 0.985 0.55 0.295
NeuroMax 0.435 0.912 0.623 0.570 0.404 0.979 0.588 0.331
w/o GR 0.437 0.940 0.613 0.554 0.410 0.957 0.577 0.324
w/o InfoNCE 0.437 0.924 0.595 0.547 0.404 0.937 0.564 0.317

Table 5: Ablation study on 20NG and Yahoo datasets.

20NG IMDB AGNews Yahoo
UTopic 44.46 98.69 39.48 39.42
NeuroMax 0.15 0.24 0.14 0.15

Table 6: Inference time of UTopic and Ours for
different datasets with 50 topics. Experiments

conducted on a NVIDIA RTX 3060 GPU.

Groups and BBC News. We adhere to the prepro-
cessing procedures outlined by (Han et al., 2023).
Tables 1 and 2 present the results of three topic co-
herence measures for 10 and 20 topics, respectively.
Our approach demonstrates performance compara-
ble to that of UTopic and consistently outperforms
other methods. This outcome is expected, as the in-
tegration of the PLM’s knowledge does not directly
maximize the mutual information between topic
proportions and contextualized representations. In-
stead, it operates via a lower bound approximation,
which leads to improved topic coherence compared
to methods that do not rely on PLMs, but does not
achieve comparable embedding quality to methods
that directly utilize PLMs, resulting in suboptimal
overall performance.

We subsequently conducted experiments to eval-
uate the overall topic quality and document-topic
distribution quality across four datasets: 20NG,
Yahoo, IMDB, and AG News. The bag-of-words
representation was obtained following the prepro-
cessing steps described in (Wu et al., 2023b), and
the contextualized embeddings were obtained af-
ter removing newline characters. Tables 3 and 4
report the topic quality and document-topic dis-
tribution quality for 50 and 100 topics, respec-
tively. We provide the descriptive statistic in Ap-
pendix A.4. UTopic, as discussed in the previ-
ous experiment, demonstrates superior topic coher-
ence performance but performs worse in terms of
document-topic distribution quality. Compared to
other baselines, our method achieves comparable
topic quality and superior clustering performance
owing to the integrated contextualized information
and group regularization, which enhance the distin-

guishability of topic groups. Moreover, we illus-
trate the topics and their relationships in Appendix
A.5.

5.3 Ablation Study

We conducted an ablation study on the 20NG
dataset to analyze the impact of each component
of our model on overall performance. Specifi-
cally, we iteratively remove the group regularizer
and the InfoNCE loss, subsequently evaluating the
model’s performance. Table 5 presents the results
obtained. In terms of document-topic distribution
quality, measured by NMI and Purity, both com-
ponents enhance the quality of the distribution.
The model incorporating both components achieves
the highest performance. Regarding topic quality,
the model’s performance remains competitive even
with the removal of one component.

5.4 Inference time

We conducted experiments to measure the infer-
ence time of our model compared to UTopic, a
model that utilizes contextualized embeddings as
input. The results, presented in Table 6, demon-
strate that our method achieves approximately 300
times faster inference while maintaining compet-
itive performance, as discussed in Section 5.2.
These results highlight that the method of maxi-
mizing mutual information can effectively address
the issue of high inference costs associated with
pre-trained language models with an acceptable
performance tradeoff.

6 Conclustion

In conclusion, this paper introduces NeuroMax, a
novel framework designed to tackle critical chal-
lenges in neural topic modeling. By maximizing
the mutual information between the topic repre-
sentation obtained from the common encoder in
neural topic models and the representation derived
from the PLM and leveraging optimal transport
to capture topic relationships, NeuroMax offers a

7765



comprehensive solution for improving topic model-
ing efficiency and quality. Our experimental results
demonstrate that NeuroMax significantly reduces
inference time and obtains more coherent topics
and topic groups, thus enhancing document repre-
sentation for downstream task effectiveness. With
its innovative approach and promising results, Neu-
roMax represents a valuable contribution to the
field of neural topic modeling.

Limitations

Our proposed method has several limitations. First
is the necessity to predefine the number of topics
and groups as hyperparameters. This requirement
is undesirable in real-world applications where the
number of topics and topic groups are needed to be
determined dynamically. A potential solution is to
utilize the stick-breaking process, as demonstrated
in (Chen et al., 2021; Ning et al., 2020), which
can automatically determine the number of topics
necessary. Another limitation is the challenge of
applying our method to other scenarios, particu-
larly dynamic topic models, online learning, and
streaming learning. Adapting our approach to effec-
tively capture the relationships between topics in
temporal data remains an area for future research.
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A Appendix

A.1 Algorithm

The detail training algorithm for NeuroMax is pre-
sented in Algorithm 1.

A.2 Implementation Details.

Our implementation builds upon PyTorch (Ansel
et al., 2024) and TopMost (Wu et al., 2023c, 2024a),
a publicly available toolkit for topic modeling. Pal-
metto (Röder et al., 2015) is used to quantify topic
coherence.We employ the allMiniLM− L6− v2
model (Reimers and Gurevych, 2019) as our pre-
trained language model. GloVe (Pennington et al.,
2014) serves as the initial word embedding. Follow-
ing the architecture in (Wu et al., 2023b), we utilize
the same encoder network, comprising a two-layer
softplus-activated MLP and an additional layer for
the mean and covariance of the latent variable. We
also train our model for N = 500 epochs with a

batch size of 200, utilizing the Adam optimizer
(Kingma and Ba, 2017) with a learning rate set to
0.002. The hyperparameter u of the group regu-
larizer is set to 1

5 , and the number of first-stage
training epochs is set to 10. The weight hyperpa-
rameters are searched in ranges as follows:

Parameter Values
λECR 20, 40, 50, 60, 80, 100, 150, 200, 250

λGR 1, 5, 10, 20, 50

λInfoNCE 1, 10, 30, 50, 80, 100, 130, 150

Table 7: Value range for hyperparemeter searching

A.3 Preliminary

A.3.1 Mutual Infomation Maximization

Let X and Y be two random variables. The mutual
information between X and Y , which quantifies
the degree of dependence between the two vari-
ables, is defined as:

I(X;Y ) =

∫

X

∫

Y
p(X,Y ) log

p(X,Y )

p(X)p(Y )
dxdy

(7)
In general, directly maximizing this quantity

is intractable. We resort to its lower bound for
tractable maximization (van den Oord et al., 2019):

I(X;Y ) ≥ LInfoNCE

= logN + Ep(x,y)

[
log

f(x, y)∑
y′∈B f(x, y′)

]

(8)

where f(x, y) is a similarity score between x and y,
and B is the set containing one positive and N − 1
negative examples. Intuitively, maximizing this
lower bound encourages a data instance to have a
high similarity score with its positive example and
a low similarity score with its negative examples.

A.3.2 Entropic Regularized Optimal
Transport

Let u and v be two discrete measures on
the supports {x1, x2, . . . , xn} ⊂ Rd and
{y1, y2, . . . , ym} ⊂ Rd, respectively, with associ-
ated weights (u1, u2, . . . , un) and (v1, v2, . . . , vm)
satisfying

∑
i ui =

∑
j vj . Given a cost matrix

C ∈ Rn×m, an optimal transport plan is defined as
the solution to the following optimization problem
(Peyré and Cuturi, 2020):
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Algorithm 1 Learning NeuroMax
Input: Document collection X, pretrained language model PLM, pretrained word embedding Wpretrained, number of topic K,

total number of training epoch N , number of training epochs for the first stage M ;
Output: Encoder network’s parameter Wenc, linear projections’ parameter Wϕθ , word embedding W, topic embedding T,

word-topic transport plan π∗, topic-topic transport plan Q;
Initialize W = Wpretrained

for t = 1, 2, . . . , N do
// Update parameters related to the encoder
Update Wenc and Wϕθ using a gradient descent step based on the loss L = LTM + λInfoNCELInfoNCE

// Update parameters related to the decoder
if t ≤ M then

// Stage 1
Calculate word-topic distance matrix CWT

Update π∗ as the solution of problem (4) by Sinkhorn algorithm
Update T,W using a gradient descent step based on the loss L = LTM + λECRLECR

if t = M then
Calculate matrix P

end if
else

// Stage 2
Calculate word-topic distance matrix CWT and topic-topic distance matrix C
Update Q and π∗ using Sinkhorn algorithm to sovle the OT problems (1) and (4) respectively
Update T,W using a gradient descent step based on L = LTM + λECRLECR + λGRLGR

end if
end for

minimize
P∈Rn×m

⟨P,C⟩

subject to P1 = u, P⊤1 = v.
(9)

The minimized objective function of the afore-
mentioned problem can serve as a measure of the
distance between two distributions. This distance,
along with the optimal plan, can be approximated
efficiently by solving a modified problem, specifi-
cally by introducing an entropic regularization term
to (9) and employing iterative algorithms such as
Sinkhorn algorithm (Cuturi, 2013).

The entropic regularization encourages the op-
timal transport plan to be dense (Blondel et al.,
2018). Consequently, if u ≡ v, mass from a given
atom is compelled to disperse to other atoms, with a
higher proportion of mass allocated to nearer atoms.
Therefore, the entropic regularized optimal trans-
port plan can be utilized as a similarity measure for
data points (Van Assel et al., 2023).

A.4 Descriptive Statistic
In Tables 8 and 9, we report the performance of
the NeuroMax model, providing both the mean and
standard deviation over five independent runs. For
comparison, the results for the UTopic model are
also included as a reference baseline.

A.5 Topic visualization
To assess the effectiveness of our grouping regu-
larization, we visualized word and topic embed-

Table 8: Comparison of UTopic and NeuroMax on 50
topics (mean ± std)

Dataset Metric UTopic NeuroMax

20NG

CV 0.508± 0.006 0.435± 0.004
TD 0.860± 0.032 0.912± 0.045

Purity 0.530± 0.010 0.623± 0.022
NMI 0.454± 0.003 0.570± 0.014

IMDB

CV 0.429± 0.014 0.402± 0.005
TD 0.554± 0.045 0.936± 0.025

Purity 0.550± 0.004 0.709± 0.001
NMI 0.005± 0.001 0.061± 0.002

Yahoo

CV 0.468± 0.012 0.404± 0.002
TD 0.788± 0.007 0.979± 0.003

Purity 0.473± 0.009 0.588± 0.004
NMI 0.244± 0.008 0.331± 0.002

AGNews

CV 0.545± 0.008 0.385± 0.007
TD 0.838± 0.025 0.952± 0.026

Purity 0.768± 0.018 0.804± 0.006
NMI 0.303± 0.012 0.410± 0.007

dings of 5 randomly selected groups, each com-
prising 5 randomly chosen topics, and displayed
the corresponding topic words in Figure 2. We
observed that topics within the same group tend
to share more information (highlighted in gray)
and share semantically similar words, while topics
from different groups display distinct words and
lower sharing scores. This highlights the efficacy
of our group regularizer in generating closely em-
bedded, semantically similar topics. Furthermore,
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Table 9: Comparison of UTopic and NeuroMax on 100
topics (mean ± std)

Dataset Metric UTopic NeuroMax

20NG

CV 0.523± 0.006 0.412± 0.003
TD 0.750± 0.012 0.913± 0.002

Purity 0.545± 0.006 0.602± 0.007
NMI 0.452± 0.006 0.516± 0.005

IMDB

CV 0.534± 0.004 0.381± 0.005
TD 0.656± 0.028 0.870± 0.027

Purity 0.553± 0.003 0.706± 0.004
NMI 0.004± 0.001 0.059± 0.003

Yahoo

CV 0.476± 0.013 0.390± 0.002
TD 0.612± 0.044 0.922± 0.029

Purity 0.549± 0.014 0.583± 0.005
NMI 0.305± 0.010 0.329± 0.003

AGNews

CV 0.548± 0.003 0.406± 0.007
TD 0.681± 0.021 0.957± 0.015

Purity 0.760± 0.011 0.828± 0.010
NMI 0.283± 0.011 0.389± 0.014

the topics within the same group are not collapsing,
thanks to the ECR regularizer.
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Figure 2: (Left) t-SNE visualization of topics embeddings (black dots) and embeddings of their top 10 word (color
dots). Word embeddings for topics within the same group share the same color. Pairs of topics with high
information sharing scores are highlighted in gray. (Right) Corresponding top 10 words for each topic.
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