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Abstract

Few-shot Continual Relation Extraction is a crucial chal-
lenge for enabling AI systems to identify and adapt to evolv-
ing relationships in dynamic real-world domains. Traditional
memory-based approaches often overfit to limited samples,
failing to reinforce old knowledge, with the scarcity of data
in few-shot scenarios further exacerbating these issues by hin-
dering effective data augmentation in the latent space. In this
paper, we propose a novel retrieval-based solution, starting
with a large language model to generate descriptions for each
relation. From these descriptions, we introduce a bi-encoder
retrieval training paradigm to enrich both sample and class
representation learning. Leveraging these enhanced represen-
tations, we design a retrieval-based prediction method where
each sample ”retrieves” the best fitting relation via a recip-
rocal rank fusion score that integrates both relation descrip-
tion vectors and class prototypes. Extensive experiments on
multiple datasets demonstrate that our method significantly
advances the state-of-the-art by maintaining robust perfor-
mance across sequential tasks, effectively addressing catas-
trophic forgetting.

1 Introduction
Relation Extraction (RE) refers to classifying semantic rela-
tionships between entities within text into predefined types.
Conventional RE tasks assume all relations are present at
once, ignoring the fact that new relations continually emerge
in the real world. Few-shot Continual Relation Extraction
(FCRE) is a subfield of continual learning (Hai et al. 2024;
Van et al. 2022; Phan et al. 2022; Tran et al. 2024a,b; Le
et al. 2024a) where a model must continually assimilate new
emerging relations while avoiding the forgetting of old ones,
a task made even more challenging by the limited training
data available. The importance of FCRE stems from its rele-
vance to dynamic real-world applications, garnering increas-
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Figure 1: Existing FCRE methods face catastrophic forget-
ting due to the limited and poor quality of old training sam-
ples stored in the memory buffer.

ing interest in the field (Chen, Wu, and Shi 2023a; Le et al.
2024c, 2025).

State-of-the-art approaches to FCRE often rely on
memory-based methods for continual learning (Lopez-Paz
and Ranzato 2017; Nguyen et al. 2023; Le et al. 2024b;
Dao et al. 2024). However, these methods frequently suf-
fer from overfitting to the limited samples stored in memory
buffers. This overfitting hampers the reinforcement of pre-
viously learned knowledge, leading to catastrophic forget-
ting—a marked decline in performance on learnt relations
when new ones are introduced (Figure 1). The few-shot sce-
nario of FCRE exacerbates these issues, as the scarcity of
data not only impedes learning on new tasks, but also hin-
ders helpful data augmentation, which are crucial in many
methods (Shin et al. 2017).

In order to improve on these methods, we must not com-
pletely disregard them or dwell on their weaknesses, but
rather contemplate their biggest strength. Why do so many
methods use the memory buffer in the first place? The pri-
mary objective of these replay buffers is to rehearse and
reinforce past knowledge, providing the model with some-
thing to ”look back” at during training. However, these past
samples may not always be representative of the entire class
and can still lead to sub-optimal performance. Based on this
observation, we propose a straightforward: besides relying



on potentially unrepresentative past samples, we leverage
our knowledge of the past relations themselves. This insight
leads to our approach of generating detailed descriptions
for each relation. These descriptions inherently represent the
class more accurately than the underlying information from
a set of samples, serving as stable pivots for the model to
align with past knowledge while learning new information.
By using these descriptions, we create a more robust and ef-
fective method for Few-Shot Continual Relation Extraction,
ensuring better retention of knowledge across tasks.

Overall, our paper makes the following contributions:

a. We introduce an innovative approach to Few-Shot Con-
tinual Relation Extraction that leverages Large Language
Models (LLMs) to generate comprehensive descriptions
for each relation. These descriptions serve as stable class
representations in the latent space during training. Un-
like the variability and limitations of a limited set of
samples from the memory buffer, these descriptions de-
fine the inherent meaning of the relations, offer a more
reliable anchor, significantly reducing the risk of catas-
trophic forgetting. Importantly, LLMs are employed ex-
clusively for generating descriptions and do not partici-
pate in the training or inference processes, ensuring that
our method incurs minimal computational overhead.

b. We design a bi-encoder retrieval learning framework for
both sample and class representation learning. In addi-
tion to sample representation contrastive learning, we
integrate a description-pivot learning process, ensuring
alignment of samples which maximize their respective
class samples proximity, while non-matching samples
are distanced.

c. Building on the enhanced representations, we introduce
the Descriptive Retrieval Inference (DRI) strategy. In this
approach, each sample ”retrieves” the most fitting rela-
tion using a reciprocal rank fusion score that integrates
both class descriptions and class prototypes, effectively
finalizing the retrieval-based paradigm that underpins our
method.

2 Background
2.1 Problem Formulation
In Few-Shot Continual Relation Extraction (FCRE), a model
must continuously assimilate new knowledge from a se-
quential series of tasks. For each t-th task, the model under-
goes training on the dataset Dt = {(xt

i, y
t
i)}

N×K
i=1 . Here, N

represents the number of relations in the task Rt, and K de-
notes the limited number of samples per relation, reflecting
the few-shot learning scenario. Each sample (x, y) includes
a sentence x containing a pair of entities (eh, et) and a re-
lation label y ∈ R. This type of task setup is referred to
as ”N-way-K-shot” (Chen, Wu, and Shi 2023a). Upon com-
pletion of task t, the dataset Dt should not be extensively
included in subsequent learning, as continual learning aims
to avoid retraining on all prior data. Ultimately, the model’s
performance is assessed on a test set which encompasses all
encountered relations R̃T =

⋃T
t=1 R

t.

For clarity, each task in FCRE can be viewed as a conven-
tional relation extraction problem, with the key challenge
being the scarcity of samples available for learning. The pri-
mary goal of FCRE is to develop a model that can consis-
tently acquire new knowledge from limited data while re-
taining competence in previously learned tasks. In the fol-
lowing subsections, we will explore the key aspects of FCRE
models as addressed by state-of-the-art studies.

2.2 Encoding Latent Representation
A key initial consideration in Relation Extraction is how to
formalize the latent representation of the input, as the output
of a Transformer (Vaswani et al. 2017) is a matrix. In this
work, we adopt a method recently introduced by Ma et al.
(2024). Given an input sentence x, which includes a head
entity eh and a tail entity et, we reformulate it into a Cloze-
style phrase T (x) by incorporating a [MASK] token, which
represents the relation between the entities. Specifically, the
template is structured as follows:

T (x) = x [v0:n0−1] eh [vn0:n1−1] [MASK]

[vn1:n2−1] et [vn2:n3−1] .
(1)

Each [vi] denotes a learnable continuous token, and nj de-
termines the number of tokens in each phrase. In our specific
implementation, we use BERT’s [UNUSED] tokens as [v].
The soft prompt phrase length is set to 3 tokens, meaning
n0, n1, n2 and n3 correspond to the values of 3, 6, 9, and 12,
respectively. We then forward the templated sentence T (x)
through BERT to encode it into a sequence of continuous
vectors, from which we obtain the hidden representation z
of the input, corresponding to the position of the [MASK]
token:

z = [M◦ T ](x)[position([MASK])], (2)

whereM denotes the backbone pre-trained language model.
This latent representation is then passed through an MLP for
prediction, enabling the model to learn which relation that
best fills the [MASK] token.

2.3 Learning Latent Representation
In conventional Relation Extraction scenarios, a basic
framework typically employs a backbone PLM followed by
an MLP classifier to directly map the input space to the la-
bel space using Cross Entropy Loss. However, this approach
proves inadequate in data-scarce settings (Snell, Swersky,
and Zemel 2017). Consequently, training paradigms which
directly target the latent space, such as contrastive learning,
emerge as more suitable approaches. To enhance the seman-
tic richness of the information extracted from the training
samples, two popular losses are often utilized: Supervised
Contrastive Loss and Hard Soft Margin Triplet Loss.

Supervised Contrastive Loss. To enhance the model’s
discriminative capability, we employ the Supervised Con-
trastive Loss (SCL) (Khosla et al. 2020). This loss function
is designed to bring positive pairs of samples, which share
the same class label, closer together in the latent space. Si-
multaneously, it pushes negative pairs, belonging to differ-
ent classes, further apart. Let zx represent the hidden vector



You are a professional data scientist, working in a
relation extraction project.
Given a relation and its description, you are asked
to write a more detailed description of the relation
and provide 3 sentence examples of the relation.
The relation is: relation_name
The description is: raw_description
Please generate K diverse samples of (relation
description, examples).
Your response:

Figure 2: Prompt to generate relation descriptions with
LLMs.

output of sample x, the positive pairs (zx, zp) are those who
share a class, while the negative pairs (zx, zn) correspond
to different labels. The SCL is computed as follows:

LSC(x) = −
∑

p∈P (x)

log
f(zx, zp)∑

u∈D\{x} f(zx, zu)
(3)

where f(x,y) := exp
(

γ(x,y)
τ

)
, γ(·, ·) denotes the cosine

similarity function, and τ is the temperature scaling hyper-
parameter. P (x) and D denote the sets of positive samples
with respect to sample x and the training set, respectively.

Hard Soft Margin Triplet Loss. To achieve a balance be-
tween flexibility and discrimination, the Hard Soft Margin
Triplet Loss (HSMT) integrates both hard and soft margin
triplet loss concepts (Hermans, Beyer, and Leibe 2017). This
loss function is designed to maximize the separation be-
tween the most challenging positive and negative samples,
while preserving a soft margin for improved flexibility. For-
mally, the loss is defined as:

LST(x) =

− log

(
1 + max

p∈P (x)
eξ(zx,zp) − min

n∈N(x)
eξ(zx,zn)

)
, (4)

where ξ(·, ·) denotes the Euclidean distance function. The
objective of this loss is to ensure that the hardest positive
sample is as distant as possible from the hardest negative
sample, thereby enforcing a flexible yet effective margin.

During training, these two losses is aggregated and re-
ferred to as the Sample-based learning loss:

LSamp = βSC · LSC + βST · LST (5)

3 Proposed Method
3.1 Label Descriptions
A core component of our method is achieving robust class
latent representations, making class encoding crucial. To this
end, having detailed definitions for each label, alongisde the
hidden information extracted from the samples, is essential
for our approach. In fact, the datasets used for benchmark-
ing already provide each relation with a concise description,

which we refer to as the Raw description. While leveraging
these descriptions has shown promise in previous work (Luo
et al. 2024), this approach remains limited due to its reliance
on a one-to-one mapping between input embeddings and a
single label description representation per task. This singular
approach fails to offer rich, diverse, and robust information
about the labels, leading to potential noise, instability, and
suboptimal model performance.

To address these limitations, we employ Gemini 1.5
(Team et al. 2023; Reid et al. 2024) to generate K diverse,
detailed, and illustrative descriptions for each relation. In
particular, for each label, the respective raw description will
be fed into the LLM prompt, serving as an expert-in-the-loop
to guide the model. Our prompt template is depicted in Fig-
ure 2.

3.2 Description-pivot Learning

The single most valuable quality of class descriptions in our
problem is that they are literal definitions of a relation, which
makes them more accurate representations of that class than
the underlying information from a set of samples. Thanks to
this strength, they serve as stable knowledge anchors for the
model to rehearse from, enabling effective reinforcement of
old knowledge while assimilating new information. Unlike
the variability of individual samples, a description remains
consistent, providing a more reliable reference point for the
model to rehearse from, effectively mitigating catastrophic
forgetting.

To fully leverage this inherent advantage, we integrate
these descriptions into the training process, framing the
task as one of retrieving definition, which embodies real-
world meaning, rather than a straightforward categorical
classification. By doing so, we capitalize on the unchang-
ing nature of descriptions, making them the focal point
of our model’s learning. Specifically, we incorporate two
description-centric losses to enhance this retrieval-oriented
approach:

LDes = βHM · LHM + βMI · LMI. (6)

Here, LHM and LMI denote the Hard Margin Loss and
the Mutual Information Loss, respectively. These losses are
elaborated upon in the following paragraphs.

Hard Margin Loss. The Hard Margin Loss leverages la-
bel descriptions to refine the model’s ability to distinguish
between hard positive and hard negative pairs. Given the out-
put hidden vectors {dk

x}k=1,...,K from BERT corresponding
to the label description of sample x, and zp and zn repre-
senting the hidden vectors of positive and negative samples
respectively, the loss function is formulated to maximize the
alignment between dk

x and its corresponding positive sam-
ple, while enforcing a strict margin against negative samples.



Specifically, the loss is formulated as follows:

LHM(x) =

K∑
k=1

Lk
HM(x), (7)

Lk
HM(x) =

∑
p∈PH(x)

(1− γ(dk
x, zp))

2

+
∑

n∈NH(x)

max(0,m− 1 + γ(dk
x, zn))

2, (8)

where m is a margin hyperparameter; γ(·, ·) denotes the
cosine similarity function; PH(x) and NH(x) represent the
sets of hard positive and hard negative samples, respectively.
They are determined by comparing the similarity between
dk
x and both positive and negative pairs, specifically focus-

ing on the most challenging pairs where the similarity to
negative samples is close to or greater than that of positive
samples, defined as follows:

PH(x) = {p ∈ P (x)|1− γ(dk
x, zp)

> minn∈N(x)(1− γ(dk
x, zn)),∀k ∈ [K]},

(9)

NH(x) = {n ∈ N(x)|1− γ(dk
x, zn)

< maxp∈P (x)(1− γ(dk
x, zp)),∀k ∈ [K]}.

(10)

By utilizing the label description vectors {dk
x}, opti-

mizing LHM(x) effectively sharpens the model’s decision
boundary, reducing the risk of confusion between simi-
lar classes and improving overall performance in few-shot
learning scenarios. The loss penalizes the model more heav-
ily for misclassifications involving these hard samples, en-
suring that the model pays particular attention to the most
difficult cases, thereby enhancing its discriminative power.

Mutual Information Loss. The Mutual Information (MI)
Loss is designed to maximize the mutual information be-
tween the input sample’s hidden representation zx of x
and its corresponding retrieved descriptions, promoting a
more informative alignment between them. Let dn be a hid-
den vector of other label descriptions than x. According to
van den Oord, Li, and Vinyals (2018), the Mutual Informa-
tion MI(x) between the input embedding zx and its corre-
sponding label description follows the following inequation:

MI ≥ logB + InfoNCE({xi}Bi=1;h), (11)

where we have defined:

InfoNCE({xi}Bi=1;h) =

1

B

B∑
i=1

log

∑K
k=1 h(zi,d

k
i )∑B

j=1

∑K
k=1 h(zj ,d

k
j )

, (12)

where h(zj ,d
k
j ) = exp

(
zT
j Wdk

j

τ

)
. Here, τ is the temper-

ature, B is mini-batch size and W is a trainable parameter.

Figure 3: Our Framework.

Finally, the MI loss function in our implementation is:

LMI(x) =

− log

∑K
k=1 h(zx,d

k
x)∑K

k=1 h(zx,d
k
x) +

∑
n∈N(x)

∑K
k=1 h(zx,d

k
n)

(13)

This loss ensures that the representation of the input sam-
ple is strongly associated with its corresponding label, while
reducing its association with incorrect labels, thereby en-
hancing the discriminative power of the model.

Joint Training Objective Function. Our model is trained
using a combination of the Sample-based learning loss men-
tioned in Section 2.3 and our description-pivot loss LDes,
weighted by their respective coefficients:

L(x) = LSamp + LDes (14)
= βSC · LSC(x) + βST · LST(x)

+ βHM · LHM(x) + βMI · LMI(x), (15)

where βSC, βST, βHM, and βMI are hyperparameters. This
joint objective enables the model to leverage the strengths of
each individual loss, facilitating robust and effective learn-
ing in Few-Shot Continual Relation Extraction tasks.

Training Procedure. Algorithm 1 outlines the end-to-end
training process at each task T j , with Φj−1 denoting the
model after training on the previous j − 1 tasks. In line with



FewRel (10-way–5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
RP-CRE 93.97±0.64 76.05±2.36 71.36±2.83 69.32±3.98 64.95±3.09 61.99±2.09 60.59±1.87 59.57±1.13 34.40
CRL 94.68±0.33 80.73±2.91 73.82±2.77 70.26±3.18 66.62±2.74 63.28±2.49 60.96±2.63 59.27±1.32 35.41
CRECL 93.93±0.22 82.55±6.95 74.13±3.59 69.33±3.87 66.51±4.05 64.60±1.92 62.97±1.46 59.99±0.65 33.94
ERDA 92.43±0.32 64.52±2.11 50.31±3.32 44.92±3.77 39.75±3.34 36.36±3.12 34.34±1.83 31.96±1.91 60.47
SCKD 94.77±0.35 82.83±2.61 76.21±1.61 72.19±1.33 70.61±2.24 67.15±1.96 64.86±1.35 62.98±0.88 31.79
ConPL∗∗ 95.18±0.73 79.63±1.27 74.54±1.13 71.27±0.85 68.35±0.86 63.86±2.03 64.74±1.39 62.46±1.54 32.72
CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 30.37
CPL + MI 94.69±0.7 85.58±1.88 80.12±2.45 75.71±2.28 73.90±1.8 70.72±0.91 68.42±1.77 66.27±1.58 28.42
DCRE 94.93±0.39 85.14±2.27 79.06±1.68 75.92±2.03 74.10±2.53 71.83±2.17 69.84±1.48 68.24±0.79 26.69

TACRED (5-way-5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
RP-CRE 87.32±1.76 74.90±6.13 67.88±4.31 60.02±5.37 53.26±4.67 50.72±7.62 46.21±5.29 44.48±3.74 42.84
CRL 88.32±1.26 76.30±7.48 69.76±5.89 61.93±2.55 54.68±3.12 50.92±4.45 47.00±3.78 44.27±2.51 44.05
CRECL 87.09±2.50 78.09±5.74 61.93±4.89 55.60±5.78 53.42±2.99 51.91±2.95 47.55±3.38 45.53±1.96 41.56
ERDA 81.88±1.97 53.68±6.31 40.36±3.35 36.17±3.65 30.14±3.96 22.61±3.13 22.29±1.32 19.42±2.31 62.46
SCKD 88.42±0.83 79.35±4.13 70.61±3.16 66.78±4.29 60.47±3.05 58.05±3.84 54.41±3.47 52.11±3.15 36.31
ConPL∗∗ 88.77±0.84 69.64±1.93 57.50±2.48 52.15±1.59 58.19±2.31 55.01±3.12 52.88±3.66 50.97±3.41 37.80
CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 28.88
CPL + MI 85.67±0.8 82.54±2.98 75.12±3.67 70.65±2.75 66.79±2.18 65.17±2.48 61.25±1.52 59.48±3.53 26.19
DCRE 86.20±1.35 83.18±8.04 80.65±3.06 75.05±3.07 68.83±5.05 68.30±4.28 65.30±2.74 63.21±2.39 22.99

Table 1: Accuracy (%) of methods using BERT-based backbone after training for each task. The best results are in bold.
**Results of ConPL are reproduced

memory-based continual learning methods, we maintain a
memory buffer M̃j−1 that stores a few representative sam-
ples from all previous tasks T 1, . . . , T j−1, along with a re-
lation description set Ẽj−1 that holds the descriptions of all
previously encountered relations.

1. Initialization (Line 1–2): The model for the current task,
Φj , is initialized with the parameters of Φj−1. We update
the relation description set Ẽj by incorporating new re-
lation descriptions from Ej .

2. Training on the Current Task (Line 3): We train Φj on
Dj to learn the novel relations introduced in in T j .

3. Memory Update (Lines 4–8): We select L representative
samples from Dj for each relation r ∈ Rj . These are
the L samples whose latent representations are closest to
the 1-means centroid of all class samples. These samples
constitute the memory Mr, leading to an updated overall
memory M̃j = M̃j−1 ∪Mj and an updated relation set
R̃j = R̃j−1 ∪Rj .

4. Prototype Storing (Line 9): A prototype set P̃j is gen-
erated based on the updated memory M̃j . We generate a
prototype set P̃j based on the updated memory M̃j .

5. Memory Training (Line 10): We refine Φj by training
on the augmented memory set M̃∗

j , ensuring that the
model preserves knowledge of relations from previous
tasks.

Algorithm 1: Training procedure at each task T j

Input: Φj−1, R̃j−1, M̃j−1, K̃j−1, Dj , Rj ,Kj .
Output: Φj , M̃j , K̃j , P̃j .

1: Initialize Φj from Φj−1

2: K̃j ← K̃j−1 ∪Kj

3: Update Φj by L on Dj (train on current task)
4: M̃j ← M̃j−1

5: for each r ∈ Rj do
6: pick L samples in Dj and add them into M̃j

7: end for
8: R̃j ← R̃j−1 ∪Rj

9: Update P̃j with new data in Dj (for inference)
10: Update Φj by L on M̃j and D∗

j (train on memory)

3.3 Descriptive Retrieval Inference

Traditional methods such as Nearest Class Mean (NCM)
(Ma et al. 2024) predict relations by selecting the class
whose prototype has the smallest distance to the test sample
x. While effective, this approach relies solely on distance
metrics, which may not fully capture the nuanced relation-
ships between a sample and the broader context provided by
class descriptions.

Rather than merely seeking the closest prototype, we aim
to retrieve the class description that best aligns with the in-
put, thereby leveraging the inherent semantic meaning of the
label. To achieve this, we introduce Descriptive Retrieval In-



FewRel (10-way–5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
CPL 97.25±0.30 89.29±2.51 85.56±1.21 82.10±2.02 79.96±2.72 78.41±3.22 76.42±2.25 75.20±2.33 22.05
DCRE 96.92±0.16 88.95±1.72 87.12±1.52 85.44±1.91 84.89±2.12 83.52±1.46 81.64±0.69 80.34±0.55 16.58

TACRED (5-way-5-shot)
Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓
CPL 88.74±0.44 85.16±5.38 78.35±4.46 77.50±4.04 76.01±5.04 76.30±4.41 74.51±5.06 73.83±4.91 14.91
DCRE 89.06±0.59 87.41±5.54 84.91±3.38 84.18±2.44 82.74±3.64 81.92±2.33 79.34±2.89 79.10±2.37 9.96

Table 2: Accuracy (%) of methods using LLM2Vec-based backbone after training for each task. The best results are in bold.

ference (DRI), a retrieval mechanism fusing two distinct re-
ciprocal ranking scores. This approach not only considers
the proximity of a sample to class prototypes but also in-
corporates cosine similarity measures between the sample’s
hidden representation z and relation descriptions generated
by an LLM. This dual focus on both spatial and semantic
alignment ensures that the final prediction is informed by a
richer, more robust understanding of the relations.

Given a sample x with hidden representation z and a set
of relation prototypes {pr}nr=1, the inference process begins
by calculating the negative Euclidean distance between z
and each prototype pr:

E(x, r) = −∥z − pr∥2, (16)

pr =
1

L

L∑
i=1

zi, (17)

where L is the memory size per relation. Simultaneously,
we compute the cosine similarity between the hidden repre-
sentation and each relation description prototype, γ(z,dr).
These two scores are combined into DRI score of sample x
w.r.t relation r for inference, ensuring that predictions align
with both label prototypes and relation descriptions:

DRI(x, r) =
α

ϵ+ rank(E(x, r))
+

1− α

ϵ+ rank(γ(z,dr))
,

(18)

where dr = 1
K

∑K
i=1 d

i
r, rank(·) represents the rank posi-

tion of the score among all relations. The α hyperparameter
balances the contributions of the Euclidean distance-based
score and the cosine similarity score in the final ranking
for inference, and ϵ is a hyperparameter that controls the
influence of lower-ranked relations in the final prediction.
By adjusting ϵ, we can fine-tune the model’s sensitivity to
less prominent relations. Finally, the predicted relation label
y∗ is predicted as the one corresponding to the highest DRI
score:

y∗x = argmax
r=1,...,n

DRI(x, r) (19)

This fusion approach for inference complements the
learning paradigm, ensuring consistency and reliability
throughout the FCRE process. By effectively balancing
the strengths of protoype-based proximity and description-
based semantic similarity, it leads to more accurate and ro-
bust predictions across sequential tasks.

4 Experiments
4.1 Settings
We conduct experiments using two pre-trained language
models, BERT (Devlin et al. 2019) and LLM2Vec
(BehnamGhader et al. 2024), on two widely used bench-
mark datasets for Relation Extraction: FewRel (Han et al.
2018) and TACRED (Zhang et al. 2017). We benchmark our
methods against state-of-the-art baselines: SCKD (Wang,
Wang, and Hu 2023), RP-CRE (Cui et al. 2021), CRL
(Zhao et al. 2022), CRECL (Hu et al. 2022), ERDA (Qin
and Joty 2022), ConPL (Chen, Wu, and Shi 2023b), CPL
(Ma et al. 2024), CPL+MI (Tran et al. 2024c).

4.2 Experiment results
Our proposed method yields state-of-the-art accuracy.
Table 1 presents the results of our method and the base-
lines, all using the same pre-trained BERT-based backbone.
Our method consistently outperforms all baselines across the
board. The performance gap between our method and the
strongest baseline, CPL, reaches up to 3.74% on FewRel and
5.82% on TACRED.

To further validate our model, we tested it on LLM2Vec,
which provides stronger representation learning than BERT.
As shown in Table 2, our model again surpasses CPL, with
accuracy drops of only 16.58% on FewRel and 9.96% on
TACRED.

These results highlight the effectiveness of our method
in leveraging semantic information from descriptions, which
helps mitigate forgetting and overfitting, ultimately leading
to significant performance improvements.

Exploiting additional descriptions significantly enhances
representation learning. Figure 4 presents t-SNE visual-
izations of the latent space of relations without (left) and
with (right) the use of descriptions during training. The vi-
sualizations reveal that incorporating descriptions markedly
improves the quality of the model’s representation learning.
For instance, the brown-orange and purple-green class pairs,
which are closely clustered and prone to misclassification
in the left image, are more distinctly separated in the right
image. Additionally, Figure 5 illustrates that our strategy,
which leverages refined descriptions, captures more seman-
tic knowledge related to the labels than the approach using
raw descriptions. This advantage bridges the gap imposed
by the challenges of few-shot continual learning scenarios,
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Figure 4: t-SNE visualization of the representations of 6 re-
lations post-training, with and without descriptions, using
our retrieval strategy.

leading to superior performance. Figure 6 shows the perfo-
mance of our model on TACRED as the number of generated
expert descriptions per training varies. The results indicate
that the model performance generally improves from K = 3
and peaks at K = 7.
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Figure 5: The impact of refined descriptions generated by
LLMs. The green, orange, and blue bars show respectively
the final accuracies of DCRE when using refined descrip-
tions, original descriptions, and without using descriptions.

Our retrieval-based prediction strategy notably en-
hances model performance. Table 3 demonstrates that
by leveraging the rich information from generated descrip-
tions, our proposed strategy improves the model’s perfor-
mance by up to 1.31% on FewRel and 6.66% on TACRED
compared to traditional NCM-based classification. The har-
monious integration of NCM-based prototype proximity and
description-based semantic similarity enables our strategy to
deliver more accurate and robust predictions across sequen-
tial tasks.

4.3 Ablation study
Table 8 present evaluation results that closely examine the
role of each component in the objective function during
training. The findings underscore the critical importance of
LMI and LHM, both of which leverage instructive descrip-
tions from LLMs, aided by Raw descriptions. Because when

Method FewRel TACRED

BERT LLM2Vec BERT LLM2Vec

NCM 66.93 79.26 58.26 75.00
DRI (Ours) 68.24 80.34 63.21 79.10

Table 3: DRI and NCM prediction.
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Figure 6: Model performance when varying K, on TACRED
5-way 5-shot.

we ablate one of them, the final accuracy can be reduced by
6% on the BERT-based model, and 10% on the LLM2VEC-
based model.

Method BERT LLM2Vec

FewRel TACRED FewRel TACRED

DCRE (Our) 68.24 63.21 80.34 79.10
w/o LSC 67.58 62.11 78.39 77.01
w/o LMI 65.10 57.23 70.61 74.17
w/o LHM 66.20 62.46 77.22 74.75
w/o LST 67.54 59.56 77.48 73.77

Table 4: Ablation study.

5 Conclusion

In this work, we propose a novel retrieval-based approach to
address the challenging problem of Few-shot Continual Re-
lation Extraction. By leveraging large language models to
generate rich relation descriptions, our bi-encoder training
paradigm enhances both sample and class representations
and also enables a robust retrieval-based prediction method
that maintains performance across sequential tasks. Exten-
sive experiments demonstrate the effectiveness of our ap-
proach in advancing the state-of-the-art and overcoming the
limitations of traditional memory-based techniques, under-
scoring the potential of language models and retrieval tech-
niques for dynamic real-world relationship identification.
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A Appendix
B Experimental Details

B.1 Datasets
Our experiments utilize the following two benchmarks:

• FewRel (Han et al. 2018) includes 100 relations with
70,000 samples. Following Qin and Joty (2022), we em-
ploy a setup with 80 relations, partitioned into 8 tasks,
each comprising 10 relations (10-way). Task T 1 includes
100 samples per relation, whereas the remaining tasks are
characterized as few-shot tasks conducted under 5-shot
settings.

• TACRED (Zhang et al. 2017) encompasses 42 rela-
tions with 106,264 samples extracted from Newswire and
Web documents. Consistent with the approach outlined
by Qin and Joty (2022), we exclude instances labeled
as ”no relation” and allocate the remaining 41 relations
across 8 tasks. Task T 1 comprises 6 relations, each with
100 samples, while each subsequent tasks involve 5 rela-
tions (5-way) in 5-shot setups.

B.2 Baselines
In this section, we briefly describe some state-of-the-art
methods in FCRE that appear as benchmarking baselines in
our evaluations, including:

• SCKD (Wang, Wang, and Hu 2023) adopts a systematic
strategy for knowledge distillation, which aims to pre-
serve old knowledge from previous tasks. Besides, this
method employs contrastive learning techniques with
pseudo samples to enhance the distinguishability be-
tween representations of different relations.

• CPL (Ma et al. 2024) proposes a Contrastive Prompt
Learning framework, which designs prompts to general-
ize across categories and uses margin-based contrastive
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learning to handle hard samples, thus reducing catas-
trophic forgetting and overfitting. Besides, the authors
employ a memory augmentation strategy to generate di-
verse samples with ChatGPT, further mitigating overfit-
ting in low-resource scenarios of FCRE.

• RP-CRE (Cui et al. 2021): The approach tackles Contin-
ual Relation Extraction (CRE) by capitalizing on mem-
orized samples to mitigate the forgetting of previous re-
lations. It employs K-means clustering to identify proto-
types that represent each relation based on stored sam-
ples. These prototypes are subsequently utilized to refine
embeddings of subsequent samples, enabling the model
to preserve knowledge of past relations while learning
new ones. This methodology enhances memory utiliza-
tion compared to previous CRE models, resulting in im-
proved performance.

• CRL (Zhao et al. 2022): addresses the issue of catas-
trophic forgetting by adopting a consistent representation
learning strategy. It emphasizes the preservation of stable
relation embeddings via contrastive learning and knowl-
edge distillation during the replay of memorized sam-
ples. The method involves supervised contrastive learn-
ing on a memory bank specific to each new task, followed
by contrastive replay of memory samples and knowl-
edge distillation to retain historical relation knowledge.
Through this approach, effective alleviation of forgetting
is achieved via consistent representation learning.

• CRECL (Hu et al. 2022): extends beyond conventional
few-shot learning by imposing additional constraints on
training data. It accomplishes this by integrating informa-
tion regarding support instances to augment instance rep-
resentations. Furthermore, it advocates for open-source
task enrichment to facilitate cross-domain knowledge ag-
gregation and introduces the TinyRel-CM dataset tai-
lored specifically for few-shot relation classification with
restricted training data. Experimental results illustrate its
efficacy in enhancing performance under conditions of
limited data availability.

• ERDA (Qin and Joty 2022): This study introduces Con-
tinual Few-Shot Relation Learning (CFRL) as a novel

challenge, recognizing the constraints of current method-
ologies that demand substantial labeled data for new
tasks. CFRL endeavors to acquire knowledge of novel
relations with minimal data while averting catastrophic
forgetting. Addressing this challenge, ERDA presents a
methodology grounded in embedding space regulariza-
tion and data augmentation. This strategy imposes con-
straints on relational embeddings and integrates supple-
mentary relevant data through self-supervision. Exten-
sive experimentation showcases ERDA’s substantial per-
formance enhancements over prior state-of-the-art ap-
proaches in CFRL scenarios.

• ConPL (Chen, Wu, and Shi 2023b) introduces a method
comprising three core components: a prototype-based
classification module, a memory-enhanced module, and
a consistent learning module designed to maintain distri-
bution consistency and mitigate forgetting. Furthermore,
ConPL employs prompt learning to enhance representa-
tion learning and integrates focal loss to reduce confusion
among closely related classes.

• MI (Tran et al. 2024c) introduces a novel framework
leveraging often-discarded language model heads to pre-
serve prior knowledge from pre-trained backbones. By
employing a mutual information maximization strategy,
this method aligns the primary classification head with
retained backbone knowledge, enhancing model perfor-
mance.

It is noteworthy that we reproduce the results of ConPL
(Chen, Wu, and Shi 2023a) under the same settings as SCKD
and CPL. This is because the evaluation strategy in the orig-
inal paper is impractical for continual learning scenarios.

B.3 Architecture
• For BERT-based models: We use BERT-base-uncased

checkpoint1 on Hugging Face.
• For LLM2Vec-based models: We use the Meta-Llama-

3-8B-Instruct-mntp-supervised 2 checkpoint on Hugging
1https://huggingface.co/bert-base-uncased
2https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-

3-8B-Instruct-mntp-supervised



Face.

In addition, Figure 7 depicts the difference in architecture
and input design when using the BERT-based backbone and
the LLM2Vec-based backbone. Unlike BERT, which uses
the ”MASK” token during pretraining, the LLM2Vec model
does not. As suggested by BehnamGhader et al. (2024),
the mean pooling strategy yields the best performance for
LLM2Vec. Therefore, we replace the hybrid prompt with a
hard prompt and adopt the mean pooling strategy to obtain
the input representation.

B.4 Evaluation Protocol and Training
Configurations

For each reported result, we conduct 6 independent runs
with different random seeds and report the mean and the cor-
responding standard deviation.

Evaluation Metric
• Final average accuracy: We use final average accuracy

to evaluate methods in our experiments. The average ac-
curacy after training task Tj is calculated as follows:

ACCj =
1

j

j∑
i=1

ACCj,i

where ACCj,i is the accuracy on the test set of task Ti

after training the model on task Tj .
• Accuracy drop: indicates the decrease in average accu-

racy after training all T tasks on each benchmark.

∆ = ACCT −ACC1

Training Configuration Details of hyperparameter
search:

• Learning rate: {1× 10−5, 2× 10−5, 1× 10−4}
• α: {0.4, 0.5}
• βSC: {0.5, 1.0, 1.5, 2.0, 2.5}
• βMI: {0.5, 1.0, 1.5, 2.0, 2.5}
• βHM: {0.5, 1.0, 1.5, 2.0, 2.5}
• βST: {0.5, 1.0, 1.5, 2.0, 2.5}

Additionally, Tables 5 and 6 provide the optimal values of
hyperparameters for each model backbone.

B.5 Prompt Template
Table 9 illustrates a prompt used to generate label descrip-
tions for a relation called ”place served by transport hub”
and its respective output, during training in our strategy.

C Additional experimental results
C.1 Effect of the number of generated

descriptions for each relation
Table 7 reports the final accuracy of BERT-based models on
two benchmarks when varying the number of generated de-
scriptions K. The results show that using multiple generated
descriptions is better than using just one, as many generated

Hyperparameter Value
Current-task training epochs 10
Rehearsal training epochs 10
Learning rate 1× 10−5

ϵ 60
α 0.4
Encoder output size 768
BERT input max length 256
Margin m for Hard Margin Loss 0.5
βSC 1.0
βMI (FewRel) 1.0
βMI (TACRED) 2.0
βHM (FewRel) 1.0
βHM (TACRED) 0.5
βST 1.0
Soft prompt initialization Random
Soft prompt phrase length 3
Soft prompt number of phrases 4

Table 5: Hyperparameters for the BERT-backbone setting

Hyperparameter Value
Encoder output size 4096
Current-task training epochs 10
Rehearsal training epochs 10
Learning rate 1× 10−5

ϵ 60
α 0.4
Margin m for Hard Margin Loss 0.5
Lora alpha 16
Lora rank 8
Lora dropout 0.05
βSC 1.0
βMI (FewRel) 1.0
βMI (TACRED) 2.0
βHM (FewRel) 1.0
βHM (TACRED) 0.5
βST 1.0

Table 6: Hyperparameters setting with LLM2vec backbone.

samples help provide more specific, diverse, and semanti-
cally rich information, thereby making representation learn-
ing more comprehensive and effective. However, if K is too
large, our observations indicate that LLMs like Gemini can
generate biased and low-quality samples, which negatively
affect model performance. In particular, the best accuracy is
achieved when K = 3 on FewRel and K = 7 on TACRED.

Moreover, we provide an ablation study demonstrating
the importance of each component in the objective function
when using the optimal value of K. The results depict that
on both datasets, LMI , designed to maximize the mutual
information between the input samples’ hidden representa-
tions and their corresponding retrieved descriptions, plays
the most vital role. Its absence can cause the model to lose
4-5% in final accuracy.
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Figure 8: NCM and DRI prediction, BERT-based models

Num of generated descritions FewRel TACRED

K = 1 68.24 63.21
K = 3 69.42 64.92
K = 5 69.14 65.45
K = 7 68.92 67.85
K = 10 68.94 67.29

Table 7: Final accuracy (%) after 8 tasks, when varying the
number of generated desciptions

Method BERT

FewRel (K = 3) TACRED (K = 7)

DCRE (Our) 69.42 67.85
w/o LSC 67.12 67.11
w/o LMI 65.96 62.41
w/o LHM 69.35 66.46
w/o LST 69.03 66.12

Table 8: Ablation study with optimal values of K.

C.2 NCM and DRI prediction
Figures 8 and 9 compare model performance when using
the conventional prediction method (NCM), and our pro-
posed prediction strategy, DRI. The results show that, in
most cases, our DRI outperforms NCM. In particular, on
FewRel, DRI improves final accuracy by 1-2% compared to
NCM. Notably, on the TACRED, this gap can be achieved
by 4-5%.
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Figure 9: NCM and DRI prediction, LLM2Vec-based models

Prompt for generate label description
You are a professional data scientist, working in a relation extraction project.
Given a relation and its description, you are asked to write a more detailed description of the relation and provide 3 sentence
examples of the relation.
The relation is: place served by transport hub
The description is: territorial entity or entities served by this transport hub (airport, train station, etc.)
Please generate 2 diverse samples of (relation description, examples).
Your response:

Output:
This relation identifies the geographic areas or communities that are directly connected to and supported by a specific transport
hub, such as an airport, train station, or bus terminal, emphasizing the role of the hub in providing access to transportation
services for these areas.
Examples:
- Heathrow Airport serves the Greater London area, providing access to travelers from London and surrounding towns.
- Union Station in Washington, D.C. serves the metropolitan area, facilitating travel for residents and visitors in Maryland and
Virginia.
- Los Angeles International Airport (LAX) serves not only Los Angeles but also the wider Southern California region, including
cities like Santa Monica and Long Beach.
This relation captures the locations or regions that benefit from the operational capabilities of a transport hub, highlighting its
significance in regional connectivity and economic activity.
Examples:
- Chicago O’Hare International Airport serves the entire Chicago metropolitan area, enhancing accessibility for surrounding
suburbs.
- Penn Station in New York City is a critical transport hub that serves travelers from New Jersey, New York, and Connecticut.
- Dallas/Fort Worth International Airport serves the Dallas and Fort Worth areas, acting as a key transit point for the entire
North Texas region.

Table 9: Example generated label description


