ML
ICLR

An Additive Instance-Wise Approach to Multi-class Model Interpretation

February 8, 2023

Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system. A large number of interpreting methods focus on identifying explanatory input features, which generally fall into two main categories: attribution and selection. A popular attribution-based approach is to exploit local neighborhoods for learning instance-specific explainers in an additive manner. The process is thus inefficient and susceptible to poorly-conditioned samples. Meanwhile, many selection-based methods directly optimize local feature distributions in an instance-wise training framework, thereby being capable of leveraging global information from other inputs. However, they can only interpret single-class predictions and many suffer from inconsistency across different settings, due to a strict reliance on a pre-defined number of features selected. This work exploits the strengths of both methods and proposes a framework for learning local explanations simultaneously for multiple target classes. Our model explainer significantly outperforms additive and instance-wise counterparts on faithfulness with more compact and comprehensible explanations. We also demonstrate the capacity to select stable and important features through extensive experiments on various data sets and black-box model architectures.

Overall

< 1 minute

Vy Vo, Van Nguyen, Trung Le, Quan Hung Tran, Gholamreza Haffari, Seyit Camtepe, Dinh Phung

ICLR 2023

Share Article

Related publications

ML
ICML Top Tier
May 16, 2024

Vy Vo, He Zhao, Trung Le, Edwin V. Bonilla, Dinh Phung

ML
ICML Top Tier
May 16, 2024

Vy Vo, Trung Le, Tung-Long Vuong, He Zhao, Edwin V. Bonilla, Dinh Phung

ML
ICML Top Tier
May 14, 2024

Ngoc Bui, Hieu Trung Nguyen, Viet Anh Nguyen, Rex Ying

GenAI
ML
ICML Top Tier
May 14, 2024

Bao Nguyen, Binh Nguyen, Hieu Nguyen, Viet Anh Nguyen