GenAI
CV
CVPR

Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis

March 2, 2023

Any-scale image synthesis offers an efficient and scalable solution to synthesize photo-realistic images at any scale, even going beyond 2K resolution. However, existing GAN-based solutions depend excessively on convolutions and a hierarchical architecture, which introduce inconsistency and the ”texture sticking” issue when scaling the output resolution. From another perspective, INR-based generators are scale-equivariant by design, but their huge memory footprint and slow inference hinder these networks from being adopted in large-scale or real-time systems. In this work, we propose \textbf{C}olumn-\textbf{R}ow \textbf{E}ntangled \textbf{P}ixel \textbf{S}ynthesisthes (\textbf{CREPS}), a new generative model that is both efficient and scale-equivariant without using any spatial convolutions or coarse-to-fine design. To save memory footprint and make the system scalable, we employ a novel bi-line representation that decomposes layer-wise feature maps into separate ”thick” column and row encodings. Experiments on standard datasets, including FFHQ, LSUN-Church, and MetFaces, confirm CREPS’ ability to synthesize scale-consistent and alias-free images up to 4K resolution with proper training and inference speed.

Overall

< 1 minute

Thuan Nguyen, Thanh Le, Anh Tran

CVPR 2023

Share Article

Related publications

GenAI
CV
NeurIPS
November 28, 2024

Hao Phung*, Quan Dao*, Trung Dao, Viet Hoang Phan, Dimitris N. Metaxas, Anh Tran

GenAI
ML
NeurIPS
November 28, 2024
Long Tung Vuong, Anh Tuan Bui,
Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung
GenAI
ML
NeurIPS
November 28, 2024

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, Nhat Ho

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen