GenAI
NLP
EMNLP Findings

MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention

January 26, 2024
                                                            @inproceedings{pham-etal-2023-misca,
    title = "{MISCA}: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention",
    author = "Pham, Thinh  and
      Tran, Chi  and
      Nguyen, Dat Quoc",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-emnlp.841",
    doi = "10.18653/v1/2023.findings-emnlp.841",
    pages = "12641--12650",
    abstract = "The research study of detecting multiple intents and filling slots is becoming more popular because of its relevance to complicated real-world situations. Recent advanced approaches, which are joint models based on graphs, might still face two potential issues: (i) the uncertainty introduced by constructing graphs based on preliminary intents and slots, which may transfer intent-slot correlation information to incorrect label node destinations, and (ii) direct incorporation of multiple intent labels for each token w.r.t. token-level intent voting might potentially lead to incorrect slot predictions, thereby hurting the overall performance. To address these two issues, we propose a joint model named MISCA. Our MISCA introduces an intent-slot co-attention mechanism and an underlying layer of label attention mechanism. These mechanisms enable MISCA to effectively capture correlations between intents and slot labels, eliminating the need for graph construction. They also facilitate the transfer of correlation information in both directions: from intents to slots and from slots to intents, through multiple levels of label-specific representations, without relying on token-level intent information. Experimental results show that MISCA outperforms previous models, achieving new state-of-the-art overall accuracy performances on two benchmark datasets MixATIS and MixSNIPS. This highlights the effectiveness of our attention mechanisms.",
}                                                            
Back to research

Overall

< 1 minute

Thinh Pham, Chi Tran, Dat Quoc Nguyen

Share Article

Related publications

GenAI
CV
NeurIPS
November 28, 2024

Hao Phung*, Quan Dao*, Trung Dao, Viet Hoang Phan, Dimitris N. Metaxas, Anh Tran

GenAI
ML
NeurIPS
November 28, 2024
Long Tung Vuong, Anh Tuan Bui,
Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung
GenAI
ML
NeurIPS
November 28, 2024

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, Nhat Ho

GenAI
NLP
EMNLP
November 28, 2024

Quyen Tran*, Nguyen Xuan Thanh*, Nguyen Hoang Anh*, Nam Le Hai, Trung Le, Linh Van Ngo, Thien Huu Nguyen