ML
ICML

Predictive Coding for Locally-Linear Control

March 2, 2020

High-dimensional observations and unknown dynamics are major challenges when applying optimal control to many real-world decision making tasks. The Learning Controllable Embedding (LCE) framework addresses these challenges by embedding the observations into a lower dimensional latent space, estimating the latent dynamics, and then performing control directly in the latent space. To ensure the learned latent dynamics are predictive of next-observations, all existing LCE approaches decode back into the observation space and explicitly perform next-observation prediction—a challenging high-dimensional task that furthermore introduces a large number of nuisance parameters (i.e., the decoder) which are discarded during control. In this paper, we propose a novel information-theoretic LCE approach and show theoretically that explicit next-observation prediction can be replaced with predictive coding. We then use predictive coding to develop a decoder-free LCE model whose latent dynamics are amenable to locally-linear control. Extensive experiments on benchmark tasks show that our model reliably learns a controllable latent space that leads to superior performance when compared with state-of-the-art LCE baselines.

Overall

< 1 minute

Rui ShuTung Nguyen, Yinlam Chow, Tuan PhamKhoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung H. Bui

ICML 2020

Share Article

Related publications

GenAI
ML
NeurIPS
November 28, 2024
Long Tung Vuong, Anh Tuan Bui,
Khanh Doan, Trung Le, Paul Montague, Tamas Abraham, Dinh Phung
ML
NeurIPS
November 28, 2024

Hoang Phan*, Lam Tran*, Quyen Tran*, Trung Le

ML
NeurIPS
November 28, 2024

Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, Trung Le

GenAI
ML
NeurIPS
November 28, 2024

Minh Le, An Nguyen, Huy Nguyen, Trang Nguyen, Trang Pham, Linh Van Ngo, Nhat Ho